
International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

33 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

A TRANSACTIONAL MODEL AND PLATFORM FOR DESIGNING AND

IMPLEMENTING REACTIVE SYSTEMS

Esam Mohamed Elwan

Professor of Strategic management and computer management

Head of Information Technology and Human Development Consultant

Al Ain University of Science and Technology, U. A. E.

Email: dresamelwan@gmail.com

Abstract

A reactive program is one that has “ongoing interactions with its environment”.

Reac- tive programs include those for embedded systems, operating systems, network

clients and servers, databases, and smart phone apps. Reactive programs are already a

core part of our computational and physical infrastructure and will continue to

proliferate within our society as new form factors, e.g. wireless sensors, and

inexpensive (wireless) networking are applied to new problems.

Asynchronous concurrency is a fundamental characteristic of reactive systems that

makes them difficult to develop. Threads are commonly used for implementing

reactive systems, but they may magnify problems associated with asynchronous

concurrency, as there is a gap between the semantics of thread-based computation and

the semantics of reactive systems: reactive software developed with threads often has

subtle timing bugs and tends to be brittle and non-reusable as a holistic understanding

of the software becomes necessary to avoid concurrency hazards such as data races,

deadlock, and livelock, Based on these problems.

Keywords: reactive program, ongoing interactions, embedded systems, operating

systems, databases, smart phone apps, Interactive programs, systems, the educational

field.

Introduction:

1. 1 Reactive Programs and Systems

Manna and Pnueli classify programs as either being transformational or reactive . As

implied by their name, transformational programs transform a finite input sequence

into a finite output sequence. Transformational programs often can be divided into

mailto:dresamelwan@gmail.com

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

34 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

three distinct phases corresponding to the activities of input, processing, and output. A

compiler is an example of a transformational program as it transforms a source file

into an object file. Formal models of computation like the Turing machine and λ-calculus

are concerned with transformational programs.

In contrast, a reactive program is characterized by “ongoing interactions with its

environ- ment”. A reactive program must share resources with its environment to

facilitate communication. From the perspective of the reactive program, input occurs

when the envi- ronment acts on the reactive program and output occurs when the

reactive program acts on the environment. The manipulation of resources that are

internal to a reactive program is generically referred to as processing.

Whereas transformational programs are designed to halt and produce an output,

reactive programs are often designed to run forever. The activities of input,

processing, and output are thus recurring and often overlapped in the execution of a

reactive program. Designers of reactive programs then must often reason about infinite

event sequences containing inter- leaved input, processing, and output. A web server is

a example of a reactive program as it repeatedly receives requests, processes them, and

sends responses. Reactive systems include operating systems, databases, networked

applications, interactive applications, and embed- ded systems. A number of formal

models have been developed to reason about reactive systems, and include the

Calculus of Communicating Systems , the Algebra of Commu- nicating Processes ,

Cooperating Sequential Processes, Communicating Sequential Processes, Kahn

Process Networks, the Actor Model, UNITY, and I/O Automata.

Asynchronous concurrency is a fundamental characteristic of reactive systems that

makes them difficult to design and develop. Concurrency refers to the idea that a

reactive program and its environment may act at the same time. In synchronous

models, a reactive program and its environment share a common clock that allows the

reactive program to coordinate access to shared resources, e.g., the environment writes

a shared variable in one clock cycle and the reactive program reads it in the next.

However, shared clocks are difficult to im- plement and do not scale. Consequently,

many reactive systems are asynchronous, meaning that the reactive program and the

environment evolve independently with respect to time. To facilitate communication,

asynchronous models include facilities for atomicity that allow a reactive program to act

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

35 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

without being interrupted by its environment and vice versa. These facilities for atomicity

allow a reactive program to synchronize with its environment, as the atomic events

play the role of a shared clock. A common approach to ensuring correctness in

asynchronous models is to view the environment as an adversary that may deliver

inputs at inopportune times.

State is fundamental to reactive systems and may be modeled directly or indirectly. Some

ex- amples of indirect approaches to modeling state include monads which are typically

used in functional languages such as Haskell, or mail queues with message-behavior pairs

which are used in actor-oriented languages such as Erlang. The imperative programming

paradigm models state directly using variables and assignment and the dominant languages

used to implement reactive systems, such as C, C++, and Java, are based on this

paradigm. As we are interested in expressing reactive semantics directly, we limit the

remaining discussion to reactive systems based on the imperative programming

paradigm.

The imperative programming paradigm when presented using structured programming

tech- niques attempts to express a (transformational) computation as a sequence of

statements. The computation being performed is realized by executing each statement

in the sequence where a statement is either an assignment statement, a condition

(if/else), or a loop. Control flows from one statement to the next unless altered by a

condition or loop. A locus of control is called a thread. Statements compose

sequentially, that is, a sequence of statements can be thought of as a single statement that

performs the computation of the sequence in one step. Imperative programming

languages often permit the definition of procedures, e.g., subrou- tines, functions,

macros, etc., as a way to abstract sequences of statements or expressions. Control

passes from the calling sequence to the sequence indicated by the procedure and

returns to the calling sequence when the procedure terminates. The semantics of

calling a procedure are completely compatible with the sequential composition of

statements.

Many reactive programs are multi-threaded and are designed to use the facilities of a

con- ventional operating system. For the discussion to follow, we consider each thread

in a multi-threaded program to be a reactive program. The environment for a thread

then is the operating system and the other threads with which it directly interacts. This

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

36 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

matches the definition of a reactive program as each thread will have ongoing

interactions with its envi- ronment, i.e., interact with the operating system and other

threads. This also matches the definition of asynchronous concurrency as the thread and

its environment share no common clock and can interact asynchronously. To be more

specific, a system call is asynchronous from the perspective of the operating system

and threads may receive asynchronous signals from the operating system and from

each other.

1.2: Trends

Developments in hardware and software platforms have resulted in an increasing demand

for reactive systems. Embedded systems continue to proliferate due to advances in

hardware that continue to produce new platforms, form factors, sensors, actuators, and

price points, which allow embedded computers to be applied to a variety of application

domains. Individuals, businesses, and governments are also deploying networks of sensors

and actuators to monitor, control, and coordinate critical infrastructures such as power

grids and telecommunication networks. These advances also have led to platforms for

individual users, such as smart phones, e-readers, and tablets. Applications for these

personal platforms are necessarily interactive and therefore reactive. The leveling-off of

processor speeds and the resulting trend toward multi-core processors is also creating

demand for reactive systems, as increases in performance must come through

increasingly concurrent applications.

A general trend toward distribution is also driving demand for reactive systems.

Increasingly, network services form the core (or are at least a critical component) of

many applications and are fundamental to delivering the content (e.g., downloading

books and movies) and communication (e.g., using social media) that drive the

application. More and more devices are being equipped with (especially wireless)

network adapters due to the introduction of inexpensive networking technologies.

Networks are now also emerging, as opposed to being intentionally deployed, in

environments such as the home, office, hospitals, etc. Applica- tions that take

advantage of these new networks are necessarily reactive. The trend toward distribution

is already established in enterprise computing infrastructures where networked systems

like file servers, print servers, web servers, application servers, and databases are

critical or central to supporting business processes and achieving business objectives.

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

37 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

Given the continued proliferation of reactive systems, their number, diversity, and

complexity is likely to increase as they encompass more and more interactions. This is

most evident in large-scale distributed systems where a computation is spread over a

variety of nodes. Such systems often evolve as new sub-systems are introduced and

integrated into the existing in- frastructure. The individual nodes themselves may also

contain a variety of interactions. For example, it is not uncommon to find a smart

phone application that concurrently interacts with the user via a graphical user interface,

an application server via an Internet connection, and sensors (e.g., accelerometers) that are

embedded in the hardware. Similarly, sophisti- cated servers like web servers and

databases are often built from collections of interacting reactive modules.

1.3 Limitations of the State of the Art

Failure to account for asynchronous concurrency may result in a reactive program with

timing bugs, meaning that correct execution depends on arbitrary scheduling decisions.

Timing bugs may be manifested when the schedule of events is perturbed, e.g., due to the

introduction of a new processor or operating system, or when part of the program takes

more or less time than normal. Operating systems are particularly susceptible to timing

bugs caused by device drivers.

Timing bugs can escape even a rigorous software development process and may lay

dormant for years. Furthermore, timing bugs are notoriously difficult to diagnose, inspiring

the term heisenbug, a bug that disappears or changes its behavior when someone is

attempting to find it (because the debugging process alters the timing of the program) .

Timing bugs can cost many hours of debugging time and can lead to a poor user

experience, e.g., a non-responsive device or application, and loss of revenue, e.g., when an

advertisement service cannot be used while a server reboots.

Introducing asynchronous concurrency into the imperative programming paradigm

places a burden on developers as they must explicitly identify the statement sequences

that must be atomic. The misuse of synchronization primitives, which becomes likely

as state transitions become complex, may introduce concurrency hazards (e.g.,

deadlock) which manifest themselves as timing bugs.

A number of design patterns for concurrency have been developed to help developers

avoid concurrency hazards,. These design patterns represent a move toward implicit

atomicity as they often attempt to leverage language features to control atomicity (e.g.,

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

38 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

scoped locking). While some of these patterns have been incorporated into programming

languages (e.g., the synchronized keyword of Java implements the thread-safe

interface pattern), they are most often enforced only by convention and therefore easily

violated or ignored (e.g., if a new developer is unaware of the convention). In practice,

explicit atomicity and the corresponding use of synchronization primitives has proven

to be tedious and error prone.

Correct synchronization in sequential imperative programs is a holistic problem that

re- sists encapsulation. Sequential imperative programs, both transformational and

reactive, are often designed using functionally modular principles such as procedural

programming, object-oriented programming, and functional programming. A

transition in a reactive pro- gram then is typically distributed over a variety of modules,

i.e., the graph of procedure calls. The challenge for a developer then is to identify all of

the shared state and then use syn- chronization primitives to guard concurrent updates.

Proper synchronization is based upon a complete understanding of the call graph

(which may not be fully known due to aliasing). The resulting code tends to be brittle

as modifications tend to introduce new timing bugs.

1.4 Challenges

Two primary challenges must be addressed to overcome the current limitations noted in

Section 1.3: reducing accidental complexity and providing techniques for composing and

decomposing reactive systems in a principled manner. We discuss each of these

challenges in turn.

Reduce accidental complexity. A key challenge towards adequately supporting

complex reactive systems is to reduce the accidental complexity associated with their

design and implementation. For software, accidental complexity is defined as the

“difficulties that today attend its production but that are not inherent .” One source of

accidental complexity is the conflation of semantics, where a problem naturally

expressed using one set of semantics is implemented with a different set of semantics

resulting in a semantic gap and obfuscation. To illustrate, Lee shows how the common

practice of introducing thread-based concurrency via a library to an inherently

sequential language significantly alters the semantics of the language . As described in

the previous section, we claim that the currently dominant approaches to developing

reactive systems rely on inherently transformational languages that have been

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

39 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

augmented with features for concurrency, which introduces an example of the kind of

problem that Lee has identified. Thus, reducing the accidental complexity in reactive

systems requires an approach that provides direct support for reactive semantics and

addresses the inherent difficulties of asynchronous concurrency.

Achieve principled composition and decomposition. Decomposition and

composition are essential techniques when designing, implementing, and

understanding complex systems. Decomposition, dividing a complex system into a

number of simpler systems, is often used when designing a system, e.g., through top-

down design . Composition, building a complex system from a number of simpler

systems, is often used when implementing a system; i.e., simpler systems are

implemented, tested, and integrated to create larger systems. Often, the simplest

systems in a design are common and can be reused across problem domains.

Similarly, systems in the same problem domain often have common sub-systems.

Thus, a common goal in software engineering is fostering design processes that

produce and leverage reusable components. Decomposition also often imparts a

logical organization to a system when the resulting sub-systems are cohesive, i.e., each

sub-system has a well- defined purpose. Thus, decomposition is a significant aid to

understanding and managing complex systems.

Asynchronous concurrency undermines decomposition and composition when not

properly encapsulated and therefore limits our ability to design and implement complex

reactive systems. Such problems of asynchronous concurrency stem from the interactions

between reactive programs. Decomposition increases the number of reactive programs

constituting a system, which in turn increases the number of susceptible interactions and

opportunities for timing bugs. For decomposition to achieve an overall reduction in

complexity when designing a reactive system, it must reduce the amount of reasoning

that must be performed at each level of the design. Thus, it must be possible to replace

the details of how a reactive program is implemented with higher-level statements about

its behavior in terms of its interface.

A second challenge then is to ensure that reactive systems can be decomposed and

composed in a principled way. A design process based on composition and decomposition

tends to be effective when the model adheres to certain principles:

1- The model should define units of composition and a means of composition.

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

40 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

Obviously, a model that does not define a unit of composition and a means of composition

cannot support a design process based on composition or decomposition.

2 - The result of composition should either be a well-formed entity in the model or

be undefined. Thus, it is impossible to create an entity whose behavior and properties

go beyond the scope of the model and therefore cannot be understood in terms of the

model. When the result of composition is defined, it should often (if not always) be a

unit of composition. This principle facilitates reuse and permits decomposition to an

arbitrary degree.

3- A unit of composition should be able to encapsulate other units of composition. When

this principle is combined with the previous principle, the result is recursive encap-

sulation which permits decomposition to an arbitrary depth. Recursive encapsulation

allows the system being designed to take on a hierarchical organization.

4- The behavior of a unit of composition should be encapsulated by its interface. Encap-

sulation allows one to hide implementation details and is necessary for abstraction.

5- Composition should be compositional meaning that the properties of a unit of

compo- sition can be stated in terms of the properties of its constituent units of

composition. Thus, when attempting to understand an entity resulting from

composition, one need only examine its constituent parts and their interactions. To

illustrate, consider a sys- tem X that is a pipeline formed by composing a filter system

F with reliable FIFO channel system C. This principle states that the properties of

the composed Filter- Channel X can be expressed in terms of the properties of the

Filter F and Channel C. Compositionality requires the ability to establish properties

for units of composition that cannot be violated through subsequent composition.

6- Units of composition should have some notion of substitutional equivalence. If a unit of

composition X contains a unit of composition Y, then a unit of composition X
J
 formed

by substituting the definition of Y into X should be equivalent to X. Substitutional

equivalence guarantees that we can compose and decompose at will and summarizes

the preceding principles. We believe that substitution should be linear in the size of the

units of composition. To illustrate, suppose that X and Y are mathematical functions in

the description above. If we take the size of a unit of composition to be the number of

terms in the definition of a function then |X
J
| ≈ |X | + |Y |.

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

41 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

A model adhering to these principles facilitates and supports principled composition

and decomposition. Principled composition requires language support for interfaces,

definitions, and substitutional equivalence. A variety of useful domains including

mathematical ex- pressions, object-oriented programming, functional programming,

and digital logic circuits support principled composition.

Reactive programs based on threads are not necessarily subject to principled

decomposition and composition. To illustrate, consider three imperative reactive

programs (threads) A, X, and Y where A is composed of X and Y. Principled

composition requires that the definition of A can be formed by substituting the

definitions of X and Y. To preserve the reactive semantics when composing X and Y,

one must consider all pairs of transitions, i.e., the Cartesian product, which represents

all possible interleavings between the two statement sequences. The result of

composition then is a two-dimensional torus where each node rep- resents a compound

state, each edge represents a transition, and each direction corresponds to executing a

statement in X and/or Y. Appropriate measures must be taken to ensure that all

transitions, i.e., all vertical, horizontal, and diagonal moves in the torus, are well- defined,

i.e., explicit atomicity. We observe that 1) no existing platforms support the direct

definition of such tori and 2) reasoning about a two-dimensional torus (or N -

dimensional for N composed sequences) is qualitatively different that reasoning about a

single sequence. Thus, reactive programs based on the imperative programming paradigm

are not necessarily subject to recursive encapsulation and substitutional equivalence.

1.5 Approach and Contributions

To reduce the accidental complexity associated with the design and implementation of re-

active systems while supporting principled composition and decomposition, we propose a

transactional model for reactive systems called reactive components. A reactive

component is a set of state variables and a set of atomic transitions that operate on

those state vari- ables. Linking a transition in one component to a transition in another

component yields another transition that operates on the state variables of the constituent

components. A transition-oriented approach resolves the main difficulties of the control-

oriented imperative approach. In the reactive component model, transitions are atomic.

This relieves developers from the burden of identifying and guarding critical sections. The

composability of transi- tions allows developers to create complex state transitions

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

42 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

independent of control flow. This relieves developers from needing a holistic

understanding of the call graph when composing a complex state transition.

This research makes the following contributions to the state of the art in reactive system

development. After presenting necessary background and related work in Chapter 2, we

present the novel reactive component model in Chapter 3. In Chapter 4, we present rcgo: a

programming language for reactive components based on the Go programming language.

For tractability, we assume systems with a fixed number of components in a fixed

configuration. Chapter 5 describes the implementation of an interpreter for rcgo

including the algorithm that checks a system for sound composition, a calling convention

for transitions, the imple- mentation of move semantics, and an approach to file

descriptor I/O. Chapter 6 describes the design, implementation, and evaluation of two

concurrent schedulers. The schedulers are compared to a custom multi-threaded

application for two reactive systems. For one system, the reactive component

implementation outperforms the custom application while the cus- tom application

outperforms the reactive component implementation for the other system. The results

demonstrate that reactive components may be a viable alternative to threads but

additional work is necessary to generalize this claim. Chapter 7 presents conclusions

and describes future work that is motivated and enabled by this dissertation.

** Background and Related Work:

In this chapter, we first present background on the semantics of reactive systems. We

then provide a survey of other work related to this dissertation, with a particular

emphasis on the UNITY and I/O Automata models upon which the approach

presented here improves in specific ways.

Reactive semantics. State (memory) is fundamental to reactive systems as past inputs

influence future behavior. Baeten concludes that the first step towards developing

algebraic models for reactive systems was “abandoning the idea that a program is a

transformation from input to output, replacing this by an approach where all intermediate

states are im- portant” . The state of a reactive system is often captured in: program

variables, e.g., in Dijkstra‟s Cooperating Sequential Processes ; messages in a channel

or queue, e.g., in Milner‟s Calculus of Communicating Systems and in the Actor Model ;

or some combination of the two, e.g., in Kahn Process Networks .

Computation in a reactive system then can be viewed as a sequence of state transitions .

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

43 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

As these transitions may be complex, platforms typically allow complex state

transitions to be composed from primitive state transitions and complex states, e.g., arrays,

records, tuples, lists, sets, etc., to be composed from primitive states. Three orthogonal

techniques for composing complex state transitions are expressions, sequential

composition, and paral- lel composition. Expressions raise the level of abstraction by

summarizing a computation whose intermediate results are unimportant. A compiler or

interpreter is free to schedule the evaluation of an expression in any way that

preserves the semantics of the expression.

Sequential composition is based on the idea that complex state transformations can be de-

composed into a sequence of simpler state transformations. Parallel composition is

based on the idea that complex state transformations can be composed by relating simpler

state transformations, e.g., parallel assignment . Conceptually, the right-hand side (RHS)

of a parallel assignment is computed before any of the variables on the left-hand side

(LHS) are modified.

We distinguish between a reactive program which is a static description of a set of

transitions and a reactive process which is the realization of the transitions of the

corresponding reactive program. State may be private meaning that it may only be

updated by a single reactive process or shared meaning that it may be updated by

multiple reactive processes. The stack associated with a thread and thread specific

storage are common examples of private state. Shared state is often organized using

abstraction where updates to shared state are exposed in the form of structured

transitions as opposed to raw assignment, e.g., a method or function to place a message

in a queue. Synchronization and communication are identified as necessary activities in a

reactive system . The two approaches to communication are shared variables and

message passing .

Multiple reactive processes effect state transitions that overlap in time, which is called

con- currency. Simultaneous state transitions, i.e., those that overlap in real time, require

parallel physical resources. State transitions that are formed by sequential composition

may be over- lapped by interleaving the primitive transitions of the corresponding

complex transitions. The result of concurrent state transitions that update the same

(shared) state may be un- defined. Consequently, updates to shared state must be

coordinated to prevent corruption.

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

44 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

Platforms for reactive systems, therefore, include the notion of atomicity which says

that certain transitions may not be interrupted, i.e., executed simultaneously or

interleaved with another transition. An event is an atomic state transition.

Non-determinism is another inherent attribute of reactive systems that conveys the idea

that the order of events in a reactive system is not fixed. Non-determinism is typically

combined with atomicity to ensure that transitions are well-defined. In a pair of events

operating on the same state, for example, atomicity says that one event will be executed

before the other while non-determinism says that the order in which they are executed

is not determined.

True concurrency, i.e., simultaneity, is often modeled using a non-deterministic sequence

of atomic events, e.g.,.

As a sequence of atomic transitions, a reactive process (or rather the reactive program

that defines it) may either have deterministic sequencing or non-deterministic

sequencing. As im- plied by the name, the order of transitions in a reactive process with

deterministic sequencing is completely determined, i.e., there is always a single next

transition (or termination). The sequence of state transitions is called a flow of control.

Reactive processes with deterministic sequencing are often based on an (infinite) loop

that repeats for the duration of the reactive process. Influential models based on

deterministic sequencing include Dijkstra‟s Cooperating Sequential Processes and

Hoare‟s Communicating Sequential Processes.

Conversely, the order of transitions in a reactive process with non-deterministic

sequencing is not completely determined, i.e., the next transition is selected from a set of

candidates. Platforms supporting reactive processes with non-deterministic sequencing

include a sched- uler, which chooses among the available transitions. Reactive programs

with deterministic sequencing correspond to a (circular) list of transitions while reactive

programs with non- deterministic sequencing correspond to a set of transitions.

Deterministic sequencing and non-deterministic sequencing only describe individual

reactive processes as the global choice for the next transition is in general non-

deterministic. Influential models based on non- deterministic sequencing include the

UNITY model of Chandy and Misra and Lynch‟s I/O Automata.

Atomicity may either be explicit or implicit in a model for reactive systems.

Platforms that support reactive processes with deterministic sequencing and shared

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

45 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

variables typically include primitive transitions called synchronization primitives, e.g.,

test-and-set, compare- and-swap, that may atomically update state and/or alter the

flow of control. Synchro- nization primitives can be used to construct more general

synchronization mechanisms like semaphores and monitors. The goal of

synchronization is to create atomic sequences of transitions called critical regions or

critical sections. Atomicity, therefore, is made explicit by the programmer. Message

passing combines communication with synchroniza- tion to achieve implicit atomicity

in reactive programs based on deterministic sequencing . Non-deterministic sequencing

requires that all transitions be atomic and therefore implies implicit atomicity.

Related work. Reactive systems are designed and implemented using shared variables

and/or message passing. A popular approach to reactive systems is the pairing of

shared variables with deterministic sequencing and explicit atomicity as is done in

Dijkstra‟s Coop- erating Sequential Processes. Andrews and Schneider describe a

number of techniques associated with this approach including coroutines, fork/join,

spin locks, semaphores, con- ditional critical regions, and monitors. This model is

supported by widely available platforms, i.e., operating systems, via processes with

shared memory or threads.

A number of architectural patterns have been developed based on this approach, e.g.,.

As described by Lee , support for this model can be integrated into an existing

sequential language through an external library, e.g., POSIX threads, or extensions to

the base language, e.g., Cilk , Split-C , C++11 . Sutter and Larus and Lee provide a

modern perspective on the difficulties associated with this approach. In , the authors

call for “OO for concurrency–higher-level abstractions that help build concurrent

programs, just as object-oriented abstractions help build large componentized

programs.” The work presented in this dissertation is a step in this direction.

Transactional memory has been proposed as an alternative to locks when

synchronizing mul- tiple processes. Transactional memory was inspired by the atomic

transactions of databases . Knight and then Herlihy and Moss proposed cache-based

hardware support for trans- actional memory. Transactional memory is forthcoming on

modern processors .

Software transactional memory, proposed by Shavit and Touitou , has sparked a great

deal of in- terest and has been implemented in a number of languages, e.g., Clojure .

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

46 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

Another technique for designing and implementing reactive systems that is receiving

renewed interest is promises and futures Promises and futures represent two sides of a

deferred computation. The consumer of a deferred computation receives a future that

it can later interrogate for the values produced by the deferred computation. The

producer of a deferred computation receives a promise that it later fulfills by performing

the deferred computation.

Another popular approach to reactive systems is messaging passing with deterministic se-

quencing as is done in Hoare‟s Communicating Sequential Processes .

This model is also supported by widely available platforms via pipes, message queues,

and sockets.

Go is a modern programming language with language support for the Communicating

Sequen- tial Processes model . A message passing channel may either be unbounded or

have a fixed size and may be accessed synchronously or asynchronously by either the

sender or the receiver .

Events, as proposed by Ousterhout , and embodied in the Reactor and Proactor archi-

tectural patterns [84], offer a popular technique for structuring user applications based

on deterministic sequencing. The application is designed around a loop that

multiplexes I/O events from the operating system using a polling function like select

or poll. In response to an I/O event, the application invokes an (atomic) event handler

that may update the state of the process and perform non-blocking I/O on various

channels. Events invert the flow of control since high-level functions, e.g., processing

a message, are triggered by low- level functions, e.g., receiving a byte. The context of

each computation must be managed explicitly which is referred to as “stack ripping”.

Event handlers from different logical computations may be interleaved giving the

illusion of concurrency while avoiding the chal- lenges of synchronization. Event

systems wishing to take advantage of true concurrency must use multiple event loops

and face all of the challenges of multi-threaded programming. Node.js and ECMA

Script (JavaScript) are two modern programming languages based on an event loop.

UNITY and I/O Automata. The UNITY model of Chandy and Misra and

the I/O Automata model of Lynch are two influential models for reactive systems

based on non-deterministic sequencing. In these models, a scheduler repeatedly executes

transitions selected non-deterministically from the set of possible transitions. The

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

47 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

scheduler is assumed to be fair, meaning that it will execute a transition an infinite

number of times in an infinite execution. Transitions correspond to (parallel)

assignment statements in the UNITY model and actions in the I/O Automata model.

The UNITY model contains two means of com- posing programs which suggests

that a model based on non-deterministic sequencing could support principled

decomposition. Creating a program via the union operation involves taking the union

of the state variables (name-based equivalence) and assignment statements of the

constituent programs. Superposition is a means of composition that transforms an

underlying program into another. The transformation is allowed to add new state

variables, add new assignment statements with the limitation that they only update

new variables, and augment existing assignment statements but only by adding clauses

that modify new variables. The size of the resulting program (measured in assignment

statements) is on the order of the sum (as opposed to the product) of the sizes of the

two constituent programs.

Superposition is property-preserving while union is not property-preserving. However, su-

perposition has certain weaknesses, as described by the authors of UNITY.

Both union and superposition are methods for structuring programs. The union operation

applies to two programs to yield a composite program. Unlike union, a transformed

program resulting from superposition cannot be described in terms of two component

programs, one of which is the underlying program. The absence of such a decomposition

limits the algebraic treatment of superposition. Furthermore, a description of augmentation

seems to require intimate knowledge of statements in the underlying program. Appropriate

syntactic mechanisms should be developed to solve some of these problems.

They go on to note that a restricted form of superposition, i.e., one that only adds

variables and assignment statements, is equivalent to union and can be analyzed as

such.

The essence of superposition is that a transition in one program can be linked to a

transition in another program, i.e., parallel composition. Whereas UNITY lacks

language support for doing so, the I/O Automata model presents a partial solution by

associating names with transitions (actions). Actions in different Automata can then be

composed on the basis of name matching. The I/O Automata model defines three

kinds of actions: output actions, input actions, and internal actions. Output actions and

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

48 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

internal actions, collectively called local actions, contain guards and may be executed

by the scheduler. Each input action must be composed with an output action to be

executed. Output actions can produce values that are consumed by input actions. Since

the state of each I/O automaton is private, composition in the I/O Automata model is

property-preserving.

Of interest to this dissertation is the improvement and implementation of these ideas

and their application to the design and development of reactive systems. Granicz et al.

propose a compilation method for UNITY in their Mojave compiler framework . Other

initiatives to implement the UNITY programming language are summarized in :

Few compilers have been developed for the UNITY language. DeRoure‟s parallel

implementation of UNITY [31] compiles UNITY to a common backend language,

BSP-occam; Huber‟s MasPar UNITY [54] compiles UNITY to MPL for

execution on MasPar SIMD computers; and Radha and Muthukrishnan have developed

a portable implementation of UNITY for Von Neumann machines.

Goldman‟s Spectrum Simulation System allows one to simulate systems expressed as I/O

Automata. The IOA toolkit is an implementation of I/O Automata focused on

verification and simulation [3]. The IOA toolkit does contain a source-to-source

compiler (IOA to Java) and a run-time system that has been used to compile and

execute distributed protocols .

Summary. Formal models of reactive systems may be organized around sequential

threads with shared variables, e.g., Cooperating Sequential Processes , sequential

threads with message-passing, e.g., Communicating Sequential Processes, atomic

transitions with shared variables, e.g., UNITY , and atomic transitions with message-

passing, e.g., I/O Automata [64]. Models based on atomic transitions avoid reasoning

about the interleaved ex- ecution of threads which may simplify reasoning about

reactive systems. Combining atomic transitions with message passing (I/O Automata)

creates the opportunity for property- preserving composition which is problematic in

models based on shared variables, e.g., UNITY. The reactive component model

described in Chapter 3 of this dissertation extends the property-preserving

composition techniques of I/O Automata by permitting composi- tion to an arbitrary

depth and degree using the superposition technique of UNITY to link transitions in

different modules in a principled way.

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

49 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

Reactive semantics may be introduced via libraries or built into a language. Taking an

inherently transformational language and introducing reactive semantics via a library

may significantly alter the semantics of the language. With respect to language

support, an inherently transformational language may be augmented with features to

support reactive semantics or the language can be designed around a particular

approach to reactive systems. Go with CSP-style primitives is an example of the former

and Erlang as a realization of the Actor model is an example of the latter. Language

support has the potential to raise the level of abstraction and provides the opportunity to

check and enforce reactive semantics.

To date, the main focus areas of languages designed around the atomic transition paradigm

have been parallel computing and simulation. The rcgo language presented in Chapter 4 of

this dissertation instead focuses on practical concerns of software engineering such a

reference semantics for the efficient implementation of data structures, move semantics for

efficient communication, and the isolation of state for property-preserving composition.

Similarly, there are few results concerning the design, implementation, and evaluation of

fair schedulers, which are a necessary piece of run-time systems that support atomic

transitions. Chapter 5 of this dissertation describes the design, implementation, and

evaluation of two concurrent fair schedulers.

*** Reactive Component Model:

In this chapter, we present a new model for composing and decomposing reactive

programs via reactive components. The model is biased toward practical software

development even as it enforces properties based in formal methods. Consequently, the

model favors utility, prac- ticality, flexibility, and ease of implementation. Unlike UNITY

in which composition is not property-preserving, the composition of reactive components

is property-preserving which facilitates hierarchical and modular reasoning. Unlike I/O

Automata in which transitions have limited depth, a transition among reactive components

may access and cascade to an arbitrary number of other components, which permits

decomposition to an arbitrary depth and degree.

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

50 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

3. 1 Features of the Model:

Figure 3.1: Features of a reactive component

Figure 3.1 shows the major features of a reactive component. As in other state-based

formal models like UNITY [20] and I/O Automata [64], the core of a reactive component

in this model is a set of state variables and a set of atomic transitions that manipulate those

state variables. When reasoning about a system, behavior is expressed as propositions over

the state variables where the propositions are derived from the transitions.

The reactive component model defines interface elements and composition semantics that

allow reactive programs to be composed in a principled way. For example, an active

push port allows a transition in one component to be linked to a transition in another

component such that the resulting combined transition is atomic. Active push ports allow

reactive com- ponents to publicize their behavior. An active push port may be bound to

and conditionally activate zero or more passive push ports. A passive push port names the

corresponding transition that will be executed when the passive push port is activated.

This combination of passive push port and transition is called a reaction because it reacts

to a transition in another component.

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

51 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

The atomic linkage of a transition in one component to a transition in another

component through the push port mechanism allows the properties of each component

to be related to one another and more complex systems to be constructed by composing

simpler systems. Transitions that are not executed via a passive push port are executed

by the scheduler. A transition of this kind may be governed by a Boolean expression

called a precondition. The combination of a precondition and transition is called an

action because it is a voluntary transition under the control of the containing

component.

An active pull port represents an immutable external data dependency. The component

may call an active pull port to yield a value required in a transition. Active pull

ports must be bound to a passive pull port which resembles a function returning one or

more values. Associated with a passive pull port is an expression that may interrogate the

state of the corresponding component or call other pull ports. The combination of a

passive pull port and an expression is called a getter. Where push ports allow components

to publicize their behavior, pull ports allow components to safely publicize their internal

state for use by other components.

Composition in the reactive component model has two main features. The first is

recursive encapsulation where a state variable in one component may represent an

instance of another reactive component. The second is the ability to bind push ports

and pull ports through an explicit set of bindings. The decision to use an explicit set of

bindings (as opposed to implicit named-based matching) is more in keeping with the

goals and techniques of practical software development, since it facilitates the use of

software developed under different naming conventions, i.e., third-party software. A

third minor feature called exporting is the ability of an encapsulating component to

adopt interface elements of its sub-components without defining complimentary ports

and transitions that do nothing but forward an activation or call. The ability to

publicize behavior and state and the ability to assemble well-defined behavior from

existing behaviors in a straight-forward and flexible way are thus defining

characteristics of the reactive component model.

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

52 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

Figure 3.2: Diagram of a web application built using reactive components

To demonstrate the utility of component interfaces and explicit support for property-

preserving composition, we now present an illustrative design for a web application

using reactive com- ponents, as is shown in Figure 3.2. The web application consists

of five reactive compo- nents. The first is an unnamed top-level component

representing the complete application. This component has four sub-components

representing a web server, the application logic, a database, and a logging service. The

ports of the application logic component have been bound to the corresponding ports

in the web server, database, and logging service compo- nents. The interface of a

component, which consists of its ports, provides insight into the behavior of the

component. For example, based on the interface of the web server component we may

expect it to 1) verify incoming HTTP requests, 2) pass on valid HTTP requests to the

application, and 3) accept HTTP responses from the application.

Figure 3.2 also demonstrates how reactive programs can be constructed by

composing re- active components, so that a developer may focus on the application logic

and use existing components for the web server, database, and logging service.

Furthermore, one can imagine developing three stateless components surrounding the

application logic that do nothing but translate messages between application specific

message types and the generic types required by the web server, database, and logging

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

53 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

service. The application logic, then, is completely isolated from the surrounding

libraries and may be tested by providing mock components for the web server,

database, and logging service. The application logic itself has a well- defined interface

and could be reused, say, by implementing a graphical front-end to drive the

application instead of a web service.

3. 1. 1 State Variables:

Part of the internal core of a reactive component is a set of state variables, which are the

subject of the propositions that demonstrate the behavior of the system. The state variables

are manipulated by the assignment statements that constitute the transitions. As in other

formal models, the types of the state variables may be selected to make writing proofs

easier. However, implementations of the reactive component model must provide a

concrete type system that allows the state variables to be realized on a given machine. For

example, the rcgo language for reactive components presented in Chapter 4 of this

dissertation uses the type system of Go to define the types of state variables. The type of a

state variable also may be a reactive component type, which facilitates recursive

encapsulation. For modeling purposes, state variables typically have value semantics to

avoid reasoning about references and aliasing. However, and as a practical concession, we

will introduce pointers for building arbitrary linked data structures (since we advocate an

imperative state- based implementation) and discuss issues raised by introducing pointers

into the reactive component model in Chapter 4.

3.2.1 Atomic State Transitions:

The rest of the internal core of a reactive component is a set of atomic state transitions that

manipulate the state variables. A precise definition of the atomicity of state transitions will

be deferred to the subsequent sections on composition (Section 3.1.3) and execution

(Section 3.1.5). State variables and state transitions are private, meaning that transitions

can only refer to the state variables of the associated reactive component and a transition in

one reactive component can only be linked to a transition in another component through

the composition mechanisms. Thus, all initialization and updates to state variables can be

determined by examining the transitions of the corresponding component. The

encapsulation of state variables contribute to composition being compositional. All

properties established from the transitions of a component will continue to hold as the

component participates in composition since the set of transitions that affect the state

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

54 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

variables is fixed. State transitions must be deterministic meaning that the next value of

every state variable is uniquely and well defined. State transitions defined by a sequence

of simple assignments are implicitly deterministic. However, special care must be take to

ensure that state transitions are deterministic when described using parallel assignment

statements as the same variable may appear on the left-hand-side and be assigned two

different values . As described in Sections 3.1.3 and 3.1.5, composition links transitions

using parallel assignment which creates an opportunity for non-deterministic state

transitions. The problem of non-deterministic state transitions arising from composition

is explored in Section 3.3.

The reactive component model presented in this chapter does not prescribe a specific

lan- guage for encoding state transitions. The language used depends on the goals and

tastes of the one developing or analyzing the model. For example, expressing

transitions using the programming language of UNITY may allow the modeler to

extract proofs from the text, a major goal of UNITY. The approach used by I/O

Automata is to specify the condition established by each transition. As with state

variables, we present a language that uses the statements and expressions of the Go

programming language to encode state transitions in Chapter 4. This furthers our goal

of making reactive components approachable by a general software engineering

audience.

3.1.3 Actions, Reactions, Push Ports, Bindings, and Composition:

A state transition is either part of an action or a reaction. An action is a state transition

whose execution is under the control of the component to which it belongs. The action

is guarded by a precondition that is guaranteed to be true the instant before the action

is executed. The precondition is a Boolean expression that determines if the action is

enabled or disabled. If the precondition is absent, it is assumed to be true.

A reaction is a state transition whose execution is under the control of another action

or re- action. Thus, we require a mechanism for linking a reaction to an action or

another reaction. To do this, we introduce the notion of a push port. A push port is a

typed interaction point consisting of an active side that conditionally activates the port

and provides arguments to the port, and a passive side that reacts to the port and may

access the arguments provided by the active side. A reaction, therefore, is the

combination of a passive push port and a state transition.

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

55 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

A binding is a declaration that associates an active push port in one component with a

reaction in another component. The transition associated with the reaction is executed

atomically with the transition that activates the active push port. Composition in the

reactive component model is achieved by declaring sub-components (recursive

encapsulation) and linking transitions via binding.

3.1.4 Transactions:

A transaction is a compound and concrete state transition formed by expanding the

acti- vations in an instance/action pair, subject to the bindings in a system. The

instance and action that define a transaction are called the root of the transaction. A

transaction is en- abled/disabled if its root action is enabled/disabled. Given the root

instance and action, we may enumerate the active push ports that may be activated by

the transition of the action. Note that the activation of a push port is conditional, being

under the control of the transition. The push ports, in turn, activate reactions in

particular component instances. The transitions associated with the reactions may

activate other push ports and so on. This analysis can be repeated to discover all of the

reactions that are linked to the root action. The result is a transaction graph which is a

directed acyclic graph G = (N, E). Each node n ∈ N is a pair (i, x) where i is a

component instance and x is either an action, reaction, activation, or push port. Each

edge e ∈ E corresponds to a causal relationship between an action/reaction and an

activation, an activation and a push port, or a push port and a reac- tion. The edges

between actions/reactions and activations indicate that the action/reaction may execute

the activation, as they may be conditionally executed. The edges between activations

and push ports and between push ports and reactions indicate that the implied push

port or reaction will be executed if the upstream activation is executed.

3.1.5 Execution:

We adopt the common practice of modeling concurrency with non-deterministically

executed atomic actions as is done in UNITY , I/O Automata , and the Actor Model .

The execution of transactions is performed by a scheduler. The scheduler executes one

transaction at a time, thus, each transaction is atomic with respect to all other

transactions. A transaction is enabled if its precondition is true. When executing a

transaction, the scheduler first evaluates the precondition and then executes the body

of the transaction if the transaction is enabled. Thus, executing an enabled transaction

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

56 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

may result in a state change while executing a disabled transaction never causes a state

change. The scheduler is fair meaning that each transaction is executed an infinite

number of times. The system may reach a fixed point where all transactions are

disabled. The order in which transactions are executed is not determined, thus,

execution is non-deterministic.

We divide a state transition into two phases called the immutable phase and the

mutable phase. Logically, a transition assigns values to a set of state variables. This

can be modeled as a parallel assignment statement with a left-hand side (LHS)

consisting of a list of state variables and a right-hand side (RHS) consisting of a list

of expressions that provide the next value for each corresponding state variable. The

immutable phase corresponds to the computation of the RHS in a state transition. The

mutable phase corresponds to the update of the values on the LHS with the values on

the RHS. When transitions are linked with composition, we must relate the mutable

and immutable phase in one state transition to the mutable and immutable phases of

the other transitions in the transaction. Let A be a transition (action) and R be a

transition (reaction) that is activated by A. Let AI be the immutable phase of A, AM be

the mutable phase of A, RI be the immutable phase of R, and RM be the mutable phase

of R. For the sake of argument, assume that AI reads variables that are written in RM

and that RI reads variables that are written in AM. We require that AI be evaluated

before AM, RI be evaluated before RM, and AI be evaluated before RI since activation is

conditional. This leaves three possible sequences:

1 - AIAM RIRM. In this sequence, a variable is first updated in AM and then the

updated value is read in RI. The issue with this interpretation is that it does not

compose well. Ideally, we would like to be able to rewrite the transition as a single

transition consisting of a single immutable phase and mutable phase.

2 - AIRIAM RM and AIRIRM AM. These sequences resolve the issue with the first

se- quence by providing a clear immutable phase (AIRI) and mutable phase (AM RM

and RM AM).

Thus, with respect to transactions, all immutable phases (which includes all push port

activations) are performed before all mutable phases.

3.2: Example: Clock System:

To illustrate the behavior of reactive components under this model, we rewrite the

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

57 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

Clock automaton example in [64] using reactive components. The Clock automaton

consists of a free-running counter and flag used to implement a request-response

protocol. Our Clock component is defined in Figure 3.3. The state variables are

identified with var and their initial values are provided. The component contains a

reaction named request for receiving requests to sample the current value of the

counter. The component also contains an active push port named clock for

communicating the sampled value of the counter. The Clock action is conditioned on

the flag variable (which indicates that a request has been made) which when it

executes resets the flag and communicates the value of counter by activating the clock

port. The Tick action increments the free-running counter. The absence of a

precondition means this action is always enabled. A simple client for the Clock

component that perpetually requests the current count is shown in Figure 3.4.

In isolation, a Clock component will increment its counter forever and a Client

component will make a request and then stop. In order to make the two components

work together, we must compose them. Figure 3.5 shows a System component that

instantiates a Clock component and a Client component and binds the corresponding

push ports in each instance. In the composed system, the client‟s Request action will

be executed activating the request port which in turn causes the request reaction in the

clock to be executed. Figure 3.6 shows the transaction graph for the Request action.

Eventually, the clock‟s Response action will be executed activating the clock port

which in turn causes the clock reaction in the client to be executed with the current

value of the clock‟s counter. Figure 3.7 shows the transaction graph

component Clock {

var int counter (0)

var bool flag (false)

 push clock(int t)

reaction request() flag: = true

Clock: flag -> flag: = false activates clock(counter)

Tick: counter: = counter + 1

}

Figure 3.3: Definition of the Clock component of the Clock System

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

58 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

component Client {

var bool flag (false) push request()

Request: !flag -> flag:= true activates request()

reaction clock(int t) flag: = false || /* do something with t */

}

Figure 3.4: Definition of the Client of the Clock System

component System{

var Clock clock

var Client client

bind {

client.request ->

clock.request clock.clock ->

client.clock

}

}

Figure 3.5: Definition of the System component of the Clock System

client.Request

client.(activation

in Request)

client.request

clock.request

Figure 3.6: Transaction diagram for the client.Request action of the Clock System

for the Clock action. In between these actions, the Tick action of the clock is

incrementing the counter.

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

59 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

3.3 Properties of Composition:

In this section, we examine various features related to reactive components and

composition. Substitutional equivalence for reactive components is demonstrated by

outlining a procedure for in-lining sub-components. Hazards of composition, namely,

non-deterministic state tran- sitions resulting from conflicting and recursive

composition, are identified and a means of detecting them is proposed. The issue of

decomposition is considered and pull ports are introduced as a mechanism for

decomposition.

clock.Clock

clock.(activation

in Clock)

clock.clock

client.clock

Figure 3.7: Transaction diagram for the clock.Clock action of the Clock System

component System {

/* Substitution of clock component. */ var int clock_counter (0)

var bool clock_flag (false) push clock_clock(int t)

reaction clock_request() clock_flag:= true

clock_Clock: clock_flag -> clock_flag:= false activates

clock_clock(clock_counter) clock_Tick: clock_counter:= clock_counter + 1

/* Substitution of client component. */ var bool client_flag (false)

push client_request()

client_Request: !client_flag -> client_flag:= true activates client_request() reaction

client_clock(int t) client_flag:= false || /* do something with t */ bind {

client_request -> clock_request clock_clock -> client_clock

}

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

60 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

}

Figure 3.8: Substitution of state variables, ports, actions, and reactions for the sub-

components of the System component of the Clock System

component System {

var int clock_counter (0) var bool clock_flag (false) var bool client_flag (false)

push clock_clock(int t)

push client_request()

clock_Clock: clock_flag -> clock_flag, client_flag:= false, false activates

clock_clock(clock_counter) ||

/* do something with clock_counter */

client_Request: !client_flag -> client_flag, clock_flag:= true, true activates

client_request()

clock_Tick: clock_counter := clock_counter + 1

}

Figure 3.9: Simplifications of ports, bindings, and transitions in the expanded System

com- ponent of the Clock System

3.3.1 Substitutional Equivalence:

For reactive components, substitutional equivalence means that a sub-component can

be replaced with its definition and the result is a well-defined entity in the model. To

this end, a procedure for substituting the definition of a sub-component involves 1)

renaming and adding all state variables, ports, actions, and reactions to the parent

component and 2) simplifying bindings by substituting the transitions associated with

a reaction into the action or reaction that activates the reaction in question.

To illustrate, Figure 3.8 shows the result of substituting state variables, ports, actions,

and reactions into the System component of Figure 3.5. Identifiers in the sub-

components have been prefixed with the name of the sub-component instance to avoid

name clashes. For exam- ple, the request reaction in the clock sub-component has

been renamed to clock_request. Figure 3.9 shows the result of simplifying bindings

and state transitions. Note that the push ports have been retained for subsequent

composition, i.e., the System component may be a component in a larger system. The

result is a reactive component whose “size” in terms of state variables, actions, and

reactions is the sum of the sizes of its constituent components.

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

61 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

A.set

A.(activation inset)

Figure 3.10: Transaction diagram for a non-deterministic transaction

Substituting the definition of the Clock component and Client components into the

System component confirms the intuition that the flag variable in the client and flag

variable in the clock are the same since 1) initially they have the same value and 2)

they take on the same value in every state transition.

3.3.2 Determinism and Composition:

The result of composing two well-defined reactive components may yield a system

that is non- deterministic. The two “hazards” that must be avoided are non-

deterministic assignment to state variables and recursively activated reactions. Non-

deterministic assignment results when the next value for a state variable is not well

defined due to the inclusion of two or more transitions in a transaction that operate on

the state variable. To illustrate, consider the transaction depicted in Figure 3.10. The

set action of component A has a single activation that activates both the setPush1 and

setPush2 push ports. The setPush1 port is bound to the setTrue reaction of component

B while the setPush2 port is bound to the setFalse reaction of the same component B.

Suppose that the setTrue reaction sets a flag to true while the setFalse reaction sets the

same flag to false. The transaction is non-deterministic because the value of the flag

after the (A,set) transaction may either be true or false. An offending pair of

transitions may appear anywhere in a transaction graph given that arbitrary transaction

graphs may be constructed through composition. If the underlying language used to

define transitions admits pointers, dynamic memory, if statements, and loops (i.e., is

Turing-complete), then the problem of determining if two transitions operate on the

same state variable is undecidable in general [59, 80]. For a transaction graph G,

instances i1and i2, and actions/reactions t1 and t2, a necessary (but not sufficient)

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

62 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

condition for non- deterministic assignment NDA from composition is NDA(G):

∃(i1, t1), (i2, t2) ∈ G.N, i1 = i2, t1 /= t2 which says that the transaction must contain

two different transitions involving the same component instance.

A recursively activated transition occurs when the transaction graph has a cycle. The

ex- ecution of such a transaction may result in well-defined next values for all state

variables assuming that 1) the recursion is bounded and 2) the parameters passed to

every reaction result in identical computations. A transaction may be analyzed like a

traditional transfor- mational program since it has finite input, a finite output, and

should terminate. The first problem, then, is a thinly disguised version of the halting

problem since it asks if a compu- tation (the transaction) expressed in a Turing-

complete language terminates (has bounded recursion) . A bounded recursion means

that the execution of the transaction will generate a bounded number of activations A.

For each activation a ∈ A, we must determine what state is updated by a. If the

language is Turing-complete, then this problem is unde- cidable in general. For state

variables that are updated by more than one activation, we must then show that each

activation sets the state variable to the exact same next state. If we treat each

activation as a program, then we require a function that determines if two (arbitrary)

programs compute the same function, which is again, undecidable in general.

The difficulty of detecting composition that results in non-deterministic assignments

suggests that these problems are best checked by a machine. That is, an

implementation of reactive components may prevent non-deterministic assignment by

checking that NDA(G) is false for all transaction graphs in the system. Similarly, an

implementation may check for recursive activation by checking for cycles in

transaction graphs. Both of these approaches are used by the implementation

described in Section 5.2.

3.3.3 Decomposition, Getters, and Pull Ports:

Substitutional equivalence implies that the process of substituting the definition of a sub-

component into a parent component may be reversed and that sub-components may be

“factored out” of an existing component, e.g., for reuse with other components.

Another motivation for decomposition is potentially increased performance through paral-

lelism. Recall that true concurrency in reactive components is modeled as the serial and

non-deterministic execution of atomic actions. Two transactions can be safely executed

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

63 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

con- currently if it can be shown that the state variables involved in each transaction

are disjoint. As was previously mentioned, making this determination is undecidable for

Turing-complete languages in the general case. However, the problem becomes decidable

if the component instance is used as a proxy for its constituent state variables. Let rw:

t → {Read, Write} be a function that maps a transition to a value indicating that

variables are read-only during the transition or written in some way. Two

instance/transition pairs are independent (indp) if either the instances are different or at

most one of the transitions writes to the variables of the instance:

Indp ((i1, t1), (i2, t2)): i1 i2 ∨ ¬(rw (t1) = Write ∧ rw (t2) = Write) (3.1)

Two transaction graphs are independent if all of their nodes are independent indp(G1, G2)

=∀(i1, t1) ∈ G1.N, (i2, t2) ∈ G2.N indp((i1, t1), (i2, t2)). The significance of the

preceding analysis is that the determination about what actions can be executed

concurrently becomes machine checkable due to the strong guarantee that state variables

belonging to an instance can only be modified by the transitions of that instance.

To illustrate the mechanisms required for decomposition, we will factor out a Counter

com- ponent from the Clock component of Figure 3.3 and then rewrite the Clock

component using the Counter component. Upon inspection, the Tick action and request

reaction can be executed concurrently since the state variables involved in each transition

are disjoint. Figure 3.11 shows the Counter component which consists of a counter state

variable. The Tick action can be moved to the Counter component without complication.

The Clock action of the Clock component reads the value of counter which suggests that a

mechanism for accessing the state variables in a component is required. Thus, we

introduce the notion of a getter method which can be called on a component to produce a

value that may be de- rived from its state variables. In the Counter component, the

getCounter getter returns the current value of the counter. A getter is not allowed to

modify the state of a component and may only be invoked in the immutable phase. These

semantics preserve the strict separation of immutable phase and mutable phase. When

analyzing composition, a getter is treated like

component Counter { var int counter (0)

Tick: counter:= counter + 1 getCounter() int {

return counter

}

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

64 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

}

Figure 3.11: Definition of the Counter component of the Factored Clock System

component Clock { var Counter c

var bool flag (false) push clock(int t)

reaction request() flag:= true

Clock: flag -> flag:= false activates clock(c.getCounter())

}

Figure 3.12: Definition of the Clock component of the Factored Clock System

a transition that reads the state variable of the corresponding instance. Figure 3.12 shows

the Clock component rewritten to use a Counter sub-component and a getter.

The logic associated with the flag state variable represents a generic request-response

pro- tocol except for the call to c.get Counter().

To indirect the call to c.get Counter() we introduce the notion of a pull port. A pull

port represents an external value dependency. A component can demand a value from

the pull port in the immutable phase. Like push ports, pull ports have an active and

passive side. The active side represents the caller and the passive side represents the

callee. Getters are sufficient to realize the passive side of a pull port. Every active pull

port must be bound to exactly one passive pull port via composition. Figure 3.13

shows a component that implements the request-response protocol using a pull port get

Value. Figure 3.14 shows the Clock component written in terms of the Counter and

Request Response components. An export directive allows reactions, getters, and ports

in sub-components to be available in the interface of the encapsulating component.

component RequestResponse { var bool flag (false) pull getValue() int

push response(int t)

reaction request() flag:= true

Response: flag -> flag:= false activates response(getValue())

}

Figure 3.13: Definition of the Request Response component of the Factored Clock

System

component Clock { var Counter c

var Request Response rr

bind {

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

65 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

c.get Counter -> rr.get Value

}

export rr.request as request export rr.response as clock

}

Figure 3.14: Definition of the Clock component of the Factored Clock System (fully-

factored)

Pull ports are subject to a hazard of composition similar to the recursive activation

hazard of push ports. A cycle in the graph of composed pull ports is equivalent to

a recursively defined function. The recursion may be bounded but this is

undecidable in the general case. Consequently, an implementation may reject

recursively defined getters and pull ports.

3.4 Summary:

In this chapter, we have presented the reactive component model for reactive

programs. A reactive component consists of a set of state variables and transitions

that are private to the component. The interface of a reactive component consists

of push ports and reactions, which allow a component to trigger a transition in

another component, and pull ports and getters, which allow a component to access

the state of another component. The external or visible behavior of a reactive

component can be traced through its interface, specifically its push ports. The

internal details of a component can often be abstracted away to permit reasoning

about the behavior of a composed system at various levels of detail. Composition

is achieved through recursive encapsulation (sub-components) and explicit port

binding and satisfies the requirements for principled composition set forth in

Section 1.4. As demon- strated in Section 3.3.1, the definitions of sub-components

can be substituted into the con- taining component resulting in an equivalent

system (substitutional equivalence). Similarly, sub-components may be “factored

out” by using pull ports and getters to safely access the state of the sub-

components.

In this chapter, we have presented the reactive component model for reactive

programs. A reactive component consists of a set of state variables and transitions that

are private to the component. The interface of a reactive component consists of push

ports and reactions, which allow a component to trigger a transition in another

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

66 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

component, and pull ports and getters, which allow a component to access the state of

another component. The external or visible behavior of a reactive component can be

traced through its interface, specifically its push ports. The internal details of a

component can often be abstracted away to permit reasoning about the behavior of a

composed system at various levels of detail. Composition is achieved through recursive

encapsulation (sub-components) and explicit port binding and satisfies the

requirements for principled composition set forth in Section 1.4. As demon- strated in

Section 3.3.1, the definitions of sub-components can be substituted into the con-

taining component resulting in an equivalent system (substitutional equivalence).

Similarly, sub-components may be “factored out” by using pull ports and getters to

safely access the state of the sub-components.

The result of composing reactive components is either well-defined due to the atomic

na- ture of transactions or illegal due to the composition hazards of recursive transactions

and non-deterministic state transitions. Analysis of these hazards at the state variable

level is impossible due to the undecidable nature of their sub-problems. This suggests that

im- plementations may restrict composition to prevent the conditions necessary for

recursive transactions and non-deterministic state transitions. The main concession is

allowing a component instance to proxy for its state variables. The problem of detecting

recursive transactions, then, can be posed as the problem of detecting cycles in a directed

graph. Similarly, the problem of detecting potentially non-deterministic state transitions

is reduced to a set membership problem. Valid systems that fail the check for non-

deterministic state transitions using component instance proxies can be refactored by

decomposing the offending components.

** The rcgo Programming Language:

In theory, there is no difference between theory and practice. But, in practice, there is.

Anonymous.

In this chapter, we present rcgo, a novel extension to the Go programming language,

designed for reactive components. We state the motivation for the rcgo language, our

assumptions for tractability, and the features that guided our design. We then explain how

reactive components are expressed in the language and we conclude with illustrative

examples.

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

67 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

4.1 Challenges:

An implementation of the reactive component model presented in Chapter 3 is necessary

for at least two reasons. First and foremost, an implementation tests the practicality of the

model. The act of implementing the model can help to evaluate whether the assumptions

upon which the model is founded can be realized using existing techniques. Conversely, an

implementation can suggest restrictions to the model that are necessary to produce an

effective implementation. An example of this was seen in Section 3.3 where a component

instance was used as a proxy for its state variables, for the purpose of determining which

variables were involved in a transaction. Implementation forces one to supply and consider

details that can either qualify or disqualify a model as a practical engineering tool. This is

consistent with the emerging attitude in systems research that all new ideas and techniques

must be accompanied by relevant tools and evaluations to show their feasibility .

Second, an implementation is necessary to demonstrate that the model can be applied suc-

cessfully to real-world design and implementation problems. That is, given a platform for

reactive components, we can design, construct, and evaluate systems based on the reactive

component paradigm. Furthermore, we can evaluate critically the design and

implementation processes that the model and platform encourage. By comparing

implementations of similar systems in different models, we also can gain insight into the

strengths and weaknesses of each model. These ideas will be explored further in Chapter 5.

4.2 Constraints:

Our implementation of the reactive component model is shaped by a number of practical

concerns. First, the implementation must enforce the semantics of the model to avoid

subtle errors caused by reasoning about a system using one set of semantics and

implementing it using another set of semantics. Second, the implementation must permit

the use of linked data structures as they are fundamental to the efficient implementation of

many algorithms. Third, the implementation must support reference and move semantics

for efficient commu- nication.

Strict enforcement of the reactive component model. To enforce the semantics of

reactive components, the checks of interest are 1) the separation of the immutable and

muta- ble phase (Section 3.1.5), 2) the binding of pull ports (Section 3.3.3), and 3) the

detection of non-deterministic state transitions arising from composition (Section 3.3.2).

Not performing these checks is unacceptable due to the subtlety associated with

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

68 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

developing correct reactive programs: the semantics of reactive components would be

enforced only through convention which is easily violated. Similarly, placing the burden

on developers is unacceptable due to the amount of detail that must be considered. Thus,

the implementation must enforce the semantics of reactive components through adequate

checking.

Support for reference semantics and linked data structures. Formal models for

reactive systems typically use logic friendly data-types, i.e., those that do not introduce

aliasing, to make proofs easier. However, reference semantics and the linked data struc-

tures they make possible are a critical part of modern software engineering. As two of our

objectives are practicality and utility, our language for reactive components must support

reference semantics and linked data structures. The potential hazard created by reference

semantics is that the state of one component becomes accessible in another component.

This means that the state of a component may not be solely under the control of the

transitions for that component. Consequently, the properties associated with that

component could be violated by the other components manipulating that state.

Furthermore, an implementation that chooses to execute seemingly independent

transactions concurrently may cause data corruption since the concurrent transactions may

manipulate the same state in an uncoor- dinated fashion. Thus, our implementation of

reactive components must take special care to preserve isolation of state among reactive

components when supporting references and linked data structures.

Efficient inter-component communication. Linked data structures also create an op-

portunity for efficient communication between components. There are three modes by

which a component (sender) can share information with another component (receiver) as

they in- teract through push ports and pull ports. First, the sender may use value

semantics where it provides complete copies of the values to be communicated. This

approach is reasonable for values like numbers and small records. Second, a sender may

use reference semantics where it provides a pointer (reference) to the data to be

communicated. This approach is reasonable when the sender offers up a large data

structure. The receiver is responsible for copying any data that needs to be retained. When

using such reference semantics, receivers may read and copy the data structure represented

by the pointer but may not alter or per- sistently remember the original data structure in

any way. Third, a sender may use move semantics where it provides a pointer to a data

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

69 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

structure that the receiver may adopt as its own. In this case, the sender promises to

“forget” the data structure as the receiver is the new owner of the data structure. Move

semantics are appropriate when the size of the data to be communicated is large, there is

a single receiver, and the sender does not need to retain the data. These conditions may

arise, for example, in situations involving networking stacks and pipelines. Without move

semantics, the practicality of the reactive component model is greatly diminished.

4.3 Approach:

Our approach to implementing the reactive component model defined in Chapter 3 is to

provide a programming language that facilitates the direct expression of reactive compo-

nents. Language support for the model is beneficial because it closes the semantic gap

between reasoning and implementation. The importance of language support can be seen

in techniques like structured programming and object-oriented programming .

While these techniques can be applied in virtually any setting, their lasting utility is

derived from their implementation in a variety of programming languages. Providing

language support for reactive components raises the level of abstraction and allows

reasoning about a system consisting of them directly from its specification, instead of

reasoning in one set of semantics while implementing in another which can be tedious and

error-prone.

Language support allows developers to rely on the consistent application of the

semantics of the model through strict enforcement. Designing language support

specifically for reactive components creates an opportunity to introduce syntax and

semantics that allow a compiler or interpreter to distinguish programs that conform to

the semantics of reactive components from those that potentially may not. To

illustrate, consider the problem of ensuring that the state of a component does not

change during the immutable phase of a transition. We observe that an action/reaction

is similar to a method. Based on this observation, checking the immutability of a

component in the immutable phase should be similar to checking for const correctness

in C++. In C++, the const correctness check is performed early in the

compilation process when the program is represented as an abstract syntax tree (AST)

with full semantic information, as opposed to late in the process where the program is

represented by machine instructions with very limited semantic information. From

this, we observe that such checking is supported by 1) adding features to the language

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

70 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

to provide the necessary semantic information and 2) performing the checks early in

the translation process. An existing language might not provide enough detail to

enable the necessary checks or to achieve them efficiently. Along these same lines, an

implementation may have to make conservative assumptions to enforce the semantics of

reactive components. As was seen in Section 3.3, allowing a component instance to

serve as a proxy for all of its state variables allows the check for non-deterministic

state transitions to be implemented using known techniques.

4.4 Preliminaries:

Our approach to programming language support for reactive components is to start

with an existing language, Go, remove features that interfere with the semantics of

reactive components, and then introduce syntax and semantics for reactive

components. Go is an imperative programming language with a straightforward type

system and expressions and statements resembling C. Go supports methods but places

no emphasis on an inheritance hierarchy. In the same vein, Go does not have

constructors, destructors, function overloading, or operator overloading. This

combination makes Go an attractive foundation for a language for reactive

components since it is tractable in implementation and approachable by a general

audience. We defer to Go‟s syntax and semantics for our definitions of types,

declarations, statements, and expressions. We will not discuss the syntax and

semantics of Go except when they interact with those of reactive components.

Our implementation of Go‟s types, declarations, statements, and expressions also is

intentionally only as broad as is needed to demonstrate the contributions of this

dissertation.

In rcgo, actions, reactions, getters, initializers, and bindings are expressed using Go‟s

syntax for methods. Component types are constructed using the syntax of structs. Push

ports and pull ports are fields of a component. To enforce the immutable phase and

facilitate checks for reference semantics, we introduce syntax that prevents the abuse of

pointers. Activations in the model correspond to activate statements which activate push

ports and contain the mutable phase of a state transitions. Move semantics are realized

through a new transferable heap type and associated operations. The main features that

we remove from Go are go routines, i.e., threads, and channels which are used for

CSP-style communication.

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

71 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

Designing a programming language for reactive components using a different foundation

language (or set of foundation languages) would require a different approach and may

yield different results. For example, memory management in Go is based on garbage

collection which is consistent with allowing reference semantics while isolating

component state. In contrast, adopting a language based on manual memory management

like C and C++ will require a reconsideration as to if/how such isolation may be

achieved.

Static system assumption:

To make implementation more tractable, we will assume that the systems to be

implemented have a static topology, meaning that all reactive components are statically

defined. Both finite state and infinite state (subject to system resource limits) reactive

components are permitted, but both the number and configurations of reactive components

in a system are fixed. This is roughly equivalent to systems that assume a fixed

number of actors or threads. These assumptions are common in embedded and real-

time systems due to the combination of limited resources and a need for predictability.

These assumptions also are common in many other less constrained environments, as the

number of threads is often fixed by the design, e.g., only a fixed number of concurrent

activities is needed, or the number of threads is limited by the number of available physical

cores [99]. Thus, even with the static system assumption, an implementation of the

model is still applicable to many systems of interest. We leave the implementation of

extensions that facilitate the dynamic creation and binding of reactive components for

future work.

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

72 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

Figure 4.1: Memory model for the rcgo run-time system. An edge from one segment to

another indicates that a pointer in one segment (source) may refer to a location in

another segment (target). Any pointer may refer to a location in the constant segment

(these edges are not shown).

Memory model. Figure 4.1 illustrates the memory model for rcgo. A pointer may

refer to a location in the constant segment, a stack segment, a component segment, a

heap segment, or a transferable heap segment. The edges in the figure indicate that a

pointer in one segment may refer to a location in another segment. As implied by the

name, the constant segment is used to store constants like string literals. A pointer in any

segment may refer to the constant segment (these edges are not shown shown in the

figure).

Function parameters and local variables are allocated on a call stack as they are in

C or C++. Multiple stacks may be present if multiple transactions are executed

concurrently. As indicated by the figure, a pointer in a stack segment may refer to a

component segment, a heap segment, a transferable heap segment, or the constant

segment. A pointer referring to a location on a call stack becomes invalid after the

corresponding transaction is complete and the call stack is cleared. Consequently, it is

not safe to allow static or dynamic component state to refer to a location in a stack as it

may create a dangling pointer. Escape analysis can be used to determine if an object

should be dynamically allocated to avoid this problem. It is permissible to allow a

pointer in a stack to refer to a location in the same stack.

Transferable Hepa 1

Transferable Hepa 2

Transferable
He pa H

 Transferable Hepa H1 Transferable Hepa H2

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

73 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

As shown in Figure 4.1, the other three types of segments are component segments, heap

segments, and transferable heap segments. A component segment contains the statically al-

located state of a component while a heap segment contains the dynamically allocated

state.

A transferable heap segment is a dynamically allocated and self-contained group of

objects that can be used to extend the state of a component and make such state

transferable. The semantics of reactive components require the state of each component to

remain disjoint. A pointer in a component segment may only refer to 1) a location in the

constant segment, 2) a location in the same component segment, 3) a location in the

corresponding heap segment, or 4) a transferable heap segment. Similarly, a pointer in a

heap segment may only refer to 1) a location in the constant segment, 2) a location in

the same heap segment, 3) a location in the corresponding component segment, or 4) a

transferable heap segment. A pointer in a transferable heap segment may only refer to

1) a location in the constant segment, 2) a loca- tion in the same transferable heap

segment, or 3) another transferable heap segment. Part of our approach to maintaining

disjoint state is preventing the formation of arbitrary pointers that would allow one

component to access the state of another component. Consequently, pointer arithmetic

and casts from numeric values are not allowed. Manually deallocating memory may

result in dangling pointers which, as memory is recycled, may point to the state of

another component. Consequently, some form of automatic memory management is

necessary with the two primary candidates being reference counting and garbage

collection. Our implementation uses garbage collection and is described in Section

5.4. The component segments, heap segments, and transferable heap segments contain

all of the mutable state in the system. Mutable state outside of a component, e.g., a

global variable, is prohibited as it may introduce a data race.

4. 5 Syntax and Semantics:

This section describes the syntax and semantics of rcgo. Many concepts, e.g., components,

ports, actions, and reactions, have a natural mapping into the Go language as types and

method-like constructs. A major divergence from Go is the introduction of attributes that

change the mutability of variables, as this was necessary to maintain the isolation between

components while supporting reference semantics. The separation between the immutable

phase and mutable phase is accomplished via an activate statement that contains a con-

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

74 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

tinuation to be executed in the mutable phase. To support move semantics, we introduce a

new type called a transferable heap which allows one component to safely transfer a col-

lection of objects to another component. In the following presentation, we use the

following convention:

* keywords appear in lowercase, e.g., type

* identifiers and literals appear in uppercase and underscores, e.g., ID

* non-terminals appear in camel-case, e.g., FieldList

Components. A reactive component resembles a struct in Go since it is a group of

named state variables. A component, then, is defined with the following syntax:

type ID component { FieldList };

For example,

type Clock component {

flag bool;

counter uint;

};

introduces a type named Clock that is a reactive component with two fields (state

variables). The type of a field may be another component type to support recursive

encapsulation.

Receivers. A method in Go has one of the following two forms:

func (ID TYPE_ID) METHOD_ID Signature Body

func (ID *TYPE_ID) METHOD_ID Signature Body

The first form operates on a copy of a value of type TYPE_ID. The second form

operates on a pointer to a value of type TYPE_ID. The parameter ID names the

receiver of the method and performs the same function as the this keyword in C++

and Java. The syntax (ID TYPE_ID) is called a receiver and the syntax (ID

*TYPE_ID) is called a pointer receiver. Actions, reactions, getters, and initializers

use a pointer receiver.

Intrinsic and indirection mutability. Variables and parameters are declared with

both an intrinsic mutability and a indirection mutability. Intrinsic mutability limits the

operations that can be performed on the lvalue of the variable or parameter while

indirection mutability limits the operations that can be performed on lvalues derived

from the rvalue of the variable or parameter. By default, variables and parameters have

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

75 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

mutable intrinsic and indirection mutability. The following code is legal and sets z

to 6.

var x uint = 3;

var y *uint = &x;

var z = x + *y;

Declaring a variable or parameter to have immutable intrinsic mutability (const)

prevents the variable or parameter from being changed after it is initialized. The

following code is illegal:

var x const uint = 3;

x = 4; // Illegal

Immutable intrinsic mutability is enforced when taking the address of a variable or

parameter:

var x const uint = 3;

var y *uint = &x; // Illegal

var z $const *uint = &x; // Legal

var a uint = *z; // Legal

*z = 5; // Illegal

The second line is illegal because x could change through a statement like *y = 5;.

The third line causes z to have immutable indirection mutability ($const). The

expression *z can serve as an rvalue (line 4) but it cannot serve as an lvalue (line 5).

Indirection mutability is “sticky.” For example:

var x $const **uint =. ..;

var y $const *uint = *x; // Legal

var z *uint = *x; // Illegal

The second line honors the guarantee that all of the memory accessible through x is im-

mutable. Indirection mutability is checked in assignments and calls. Indirection mutability

affects types from which lvalues can be derived, namely, pointers and slices
3
. Immutable

indirection mutability is one of the techniques that is used to enforce the immutable

phase of state transitions.

The second kind of mutability is called foreign mutability. Foreign mutability is like

im- mutable mutability with the added condition that an address with foreign

mutability cannot be stored in a component segment, heap segment, or transferable

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

76 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

heap segment. The pri- mary application of foreign mutability is to support reference

semantics for communication while enforcing the isolation of heaps.

var x $foreign *uint =. ..;

var y **uint = new (*uint);

*x = 3; // Illegal

*y = x; // Illegal

var z $foreign *uint = x; // Legal

The third line of the code fragment above is illegal because the lvalue given by *x is

im- mutable. The fourth line is illegal because it casts away the $foreign attribute of x.

(Notice that declaring y with $foreign would cause the lvalue to be immutable.) The

fifth line is le- gal because the lvalue is mutable and the $foreign attribute is preserved.

The consequence of these semantics is that variables that contain pointers that are

declared $foreign may only be stored in stack segments.

The following checks are applied to assignment statements:

1 - The lvalue and rvalue must be type compatible.

2 - The lvalue must have mutable intrinsic mutability.

3 - If the type involved contains a pointer, check for compatible indirection mutability

(see Table 4.1). Essentially, the indirection mutability of the lvalue must be at least

as “weak” as the indirection mutability of the rvalue. This enforces the “stickiness”

of indirection mutability.

 Mutable Immutable Foreign

Mutable Yes No No

Immutable Yes Yes No

Foreign Yes Yes Yes

Table 4.1: Indirection mutability compatibility for assignment. The rows represent the

indirection mutability of the lvalue and the columns represent the indirection

mutability of the rvalue.

A parameter is foreign safe if 1) the type of the parameter does not contain pointers or

slices or 2) the parameter is declared with foreign indirection immutability. A parameter

list is foreign safe if all parameters in the list are foreign safe. A signature (a parameter list

and a return parameter list) is foreign safe if the parameter list and return parameter list are

both foreign safe. Signatures used in inter-component communication, such as push ports

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

77 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

and reactions, must be foreign safe to permit reference semantics while enforcing the

isolation of state between components.

Initializers. An initializer is used to initialize the fields of a reactive component.

This allows one to initialize components before the scheduler starts. This is necessary

for es- tablishing invariants as is commonly done in formal models, e.g., the

initially section of UNITY [20]. An initializer has the form:

init (ID *TYPE_ID) INITIALIZER_ID Signature Body

** An initializer is similar to a method but has additional semantics:

** An initializer must have a pointer receiver to a component type.

** The signature must be foreign safe.

** An initializer may only be invoked by another initializer.

An initializer sets the heap segment on entry and resets the heap segment on exit so

that all allocated memory is attributed to the receiver.

Instances. An instance is a top-level component. An instance is declared with the

follow- ing syntax:

instance ID TYPE_ID INITIALIZER_ID (ExpressionList);

Actions. An action has the form:

action (ID $const *TYPE_ID) ACTION_ID (BooleanExpression) Body

The immutable indirection mutability of the receiver enforces the immutable phase of tran-

sitions. Actions may only be defined for component types. The Boolean expression is the

precondition of the action. The receiver variable is in scope for the evaluation of the

precon- dition. The body contains the state transitions associated with the action. Actions

set the heap segment on entry and reset the heap segment on exit so that all allocated

memory is attributed to the receiver.

Reactions. A reaction has the form:

reaction (ID $const *TYPE_ID) REACTION_ID (ParameterList) Body

As with actions, the immutable indirection mutability of the receiver enforces the

immutable phase of transitions. Reactions may only be defined for component types.

The name of a reaction is used when binding to push ports. The parameter list declares

the parameters that are passed to the reaction. The parameter list must be foreign safe.

This prevents the reaction from storing memory addresses from the component that

activated the reaction. The body contains the state transitions associated with the

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

78 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

reaction. Reactions set the heap segment on entry and reset the heap segment on exit

so that all allocated memory is attributed to the receiver.

Push ports. A push port is declared as a field (of a component) with push port type.

A push port type has the form:

push (Parameter List)

The parameter list declares the parameters that are passed to any bound reaction. The

parameter list must be foreign safe. The following example declares a push port

named response in the Clock component:

type Clock component {

...

response push (t uint);

};

Getters. A getter, which provides a safe way of obtaining information from a

component, has the form:

getter (ID $const *TYPE_ID) GETTER_ID Signature Body

A getter is similar to a method but has additional semantics:

** A getter must have a pointer receiver to a component type declared with

immutable indirection mutability.

** The signature must be foreign safe.

** A getter may only be invoked by an initializer, another getter, or an action or

reaction in the immutable phase.

** A getter sets the heap on entry and resets the heap on exit so that all allocated

memory is attributed to the receiver.

Pull ports. A pull port is declared as a field (of a component) with pull port type. A

pull port type has the form:

pull (Parameter List) Return Parameter List

The parameter list declares the parameters that are passed to the bound getter and the

return parameter list declares the return values of the getter. The parameter list and

return parameter list must be foreign safe. Pull ports are called like getters and place

the same restriction on the caller, that is, a pull port may only be invoked by a

getter or an action or reaction in the immutable phase. The following example declares

a pull port named is Output Buffer Full in the Producer component:

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

79 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

type Producer component {

...

Is Out put Buffer Full pull () bool;

};

In this example, the intent of the pull port is to allow a Producer to interrogate the

status of a downstream buffer to implement flow control.

Binders. Binders allow reactions to be associated with push ports and getters to be as-

sociated with pull ports. Binding and recursive encapsulation are the two mechanisms

for composing reactive components. A binder has the form:

bind (ID *TYPE_ID) BIND_ID {

Bind Statement

...

}

For example:

bind (this *System) The Binder {

this. pro ducer.Out -> this.consumer.In;

this.producer.isOutputBufferFull <- this.consumer.isInputBufferFull;

}

The first statement of the example binds the Out push port of the System‟s producer to

the In reaction of the System‟s consumer4. The second statement of the example binds

the is Out put Buffer Full pull port of the System‟s producer to the is Input BufferFull

getter of the System‟s consumer. The left side of a bind statement always refers to a

port while the right side refers to a getter or reaction. The direction of the arrow

indicates the logical flow of information. Thus, information flows from a push port to

a reaction (->) and information flows from a getter to a pull port (<-). A pull port must

be bound to exactly one getter. A reaction may be bound to at most one push port.

Binders are associated with a component type and evaluated for each instance of that

component type.

Activations. Activations are the mechanism by which transitions extend to other

compo- nents via push port/reaction bindings. Activations also serve as the boundary

between the immutable and mutable phases of a transition. An activate statement has

the form:

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

80 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

activate PORT_ID (Arguments)... {

Statements

};

Activate statements can only occur in the body of an action or a reaction. Assume that

the receiver of the action or reaction is named this5. The expression this.PORT_ID

must refer to a push port and the arguments passed to the push port must agree with its

signature. The list of push ports in an activate statement is optional. When an activate

statement is executed, the named push ports are activated meaning that the reactions

bound to those push ports are executed with the given arguments. These reactions, in

turn, may execute other activate statements. Once all of the actions and reactions in

the transaction have activated their last push ports, they proceed to execute the bodies

of the activate statements. Recall that the receiver this has immutable indirection

mutability. Thus, all computation up to and including the last port activation

constitutes the immutable phase of the transaction since the state of the components is

not allowed to change. Within the scope of the body, the receiver this changes to

mutable indirection mutability which then allows the state of a component to be

changed. Thus, the bodies of activate statements form the mutable phase of the

transaction. Parameters and variables declared with foreign indirection mutability are

hidden within the body of an activate statement. This prevents one component from

accessing the state of another component during the mutable phase. Actions and

reactions return, i.e., their flow of control is halted, after the execution of the body of a

activate statement. Activate statements guarded by if statements facilitate conditional

activation. An activate statement may not appear in another activate statement. Our

implementation of activate statements is described in Section 5.3.

Arrays. A homogeneous group of sub-components may be declared using array

syntax. For example,

type System component {

clock [5]Clock;

...

};

declares 5 Clock sub-components. To request the time from each Clock, the System

declares an array of 5 push ports and a dimensioned action:

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

81 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

type System component {

clock [5]Clock;

push [5]request ();

...

};

 [5] action (this $const *System) (...) {

...

activate clock[IOTA] {

...

};

}

A dimensioned action is parameterized with an integral constant in the range [0,

dimension). This constant is accessed through the IOTA symbol. A push port in an array is

activated by supplying an index. The index expression must be constant to facilitate the

check for sound composition. Reactions may be dimensioned as well:

[5] reaction (this $const *System) clock (t int) {. .. }

A for-loop over an integral range may be used to generate bindings without explicitly

listing each binding. For example:

bind (this *System) {

for i... 5 {

this.request[i] -> this.clock[i].request;

};

}

Transferable heaps. A key requirement for implementing reactive components is that

the state of each component remain disjoint. Foreign indirection mutability allows

components to safely communicate with pointers because it ensures that those pointers

are forgotten after the transaction. For efficient communication, we also desire the

ability to transfer a data structure (a heap) from one component (the sender) to another

component (the receiver). The sender offers the heap to its receivers and one of the

receivers may claim the heap. If the heap is accepted, the sender must forget all

references to the heap.

The transferable heap type is so named because it resembles a heap used for dynamic

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

82 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

memory allocation. A heap has a distinguished root that contains the data structure that

will be transferred. A heap is entirely self-contained, that is, any pointer found in the

heap may only point to an address in the heap or another transferable heap segment. This

ensures that the receiver may not access state in the sender after a transfer. Heaps may

form hierarchies.

A heap is created with the new operator. For example:

var x *heap int = new (heap int);

creates new heap with an integer root.

A change statement allows one to access the root of the heap. For example:

change (x, y) {

*y = 3;

};

In the example, x is a pointer to a heap and y is a variable that points to the root of the

heap. The root variable is valid for the scope introduced by the change statement. The root

variable will be set to nil if the heap is no longer valid. Within the scope of the change

statement, all other variables and parameters that may contain pointers are re-entered with

foreign indirection immutability. This enforces the isolation of heaps by preventing the

heap from storing a pointer that refers to a location in another heap.

Logically, the run-time system maintains a stack of heaps. The top of the stack is called the

active heap and is used to service all memory allocation requests. On entering an action or

reaction, the stack of heaps contains a single heap: the heap associated with the receiver

component. A change statement pushes a new heap on the stack.

A move expression allows a receiver to take ownership of a heap being offered by a

sender. For example:

var z *heap int = move (x);

If x refers to a heap that has already been moved, i.e., claimed by this component or

another component, then the result of the move is a nil pointer. A change statement can be

used to access the data in the heap after a successful move.

A merge expression allows one to merge a heap into the active heap. For example:

var x *uint = merge (z);

A merge expression performs an implicit move, that is, the heap given to merge need not

be owned by the current component. Similarly, a merge will return nil if the heap has

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

83 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

already been claimed.

Operations on heaps, specifically, change, move, and merge are atomic within a

transaction. The reactive component model requires a clear distinction between the

mutable phase and immutable phase and some causality in the immutable phase. However,

an implementation is free to execute immutable phases concurrently and/or mutable phases

concurrently. Con- sequently, different components may be performing heap operations on

the same heap at the same time. Thus, change, move, and merge are atomic with respect to

each other. These operations return nil if they fail. For example, if two components

attempt to move the same heap, one will succeed and the other will fail.

4. 6 Examples

To demonstrate the features of rcgo, we present two examples. The first example simulates

three users using three processes which communicate using a shared variable. This

example shows all of the major syntactic elements such as component types, initializers,

actions, reactions, getters, push ports, pull ports, binders, activate statements, arrays, and

$const. The second example consists of a system and a channel. The system sends an

object to the channel and then receives the object from the channel. This example

demonstrates the transferable heap type, $foreign, new, change, move, and merge.

4. 6. 1 Shared Variable System:

In this example, we rewrite the shared variable I/O automaton on pages 240 and 242 of

[64] as a reactive component. The example consists of four kinds of components. First,

there is a Variable component which represents a shared variable. Process components

access the shared variable and report the status of the shared variable to User components.

A top-level System component instantiates the shared variable, three processes, and three

users to create a complete system. Figure 4.2 shows the Variable component.

type Variable component { value int;};

init (this *Variable) Init () { this.value = -1;}

[3] reaction (this $const * Variable) Set (v int) { activate {

this.value = v;}}

getter (this $const * Variable) Get () int { return this.value;}

Figure 4.2: Code listing for Variable component of the Shared Variable System

A Variable component has a single integer state variable named value. This variable is

initialized to the sentinel value -1 in the initializer Init. Notice that the initializer has a

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

84 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

pointer receiver (this *Variable). The receiver this has mutable indirection mutability so

that the state variable can be assigned. The value of the Variable is set in the dimensioned

reaction Set. The reaction has a dimension of three as three Process actions will be bound

to this reaction. The new value for the variable is communicated via the parameter v.

Notice that the receiver for the reaction (this $const * Variable) has immutable indirection

mutability. In the body of the activate statement, the receiver is implicitly converted to

have mutable indirection mutability. The final element of the Variable component is the

getter Get that returns the value of the variable. Since getters are not allowed to change the

state of the component, they must be declared with immutable indirection mutability (this

$const * Variable).

Figures 4.3 and 4.4 shows the Process component. The listing begins by defining the states

for a process, that is, a process is either idle, ready to access the shared variable, ready to

decide, or done. A Process component consists of three state variables: status contains

the state of the process, input contains a value received from the User, and output contains

the value that will be sent to the User. The Process component contains a pull port get_x

that will be bound to the shared variable‟s Get getter so that the Process may access the

shared variable. Similarly, the Process component contains a set_x push port that will be

bound to the shared variable‟s Set reaction to set the value of the variable. To

communicate with the User, the Process component contains a push port Decide that

communicates the value of the shared variable.

Like the Variable component, the Process component contains an initializer Init that sets

the initial value of the state variables. From the listing, Process components are initialized

to the idle state and the input and output variables are initialized to the sentinel value of -1.

The initr reaction allows a User to asynchronously initialize the Process component. From

the listing, this reaction sets the input variable to the value supplied in the argument v and

causes the Process to prepare to access the shared variable if the Process was previously

idle.

type Process Status int; const PROCESS_IDLE = 0; const PROCESS_ACCESS = 1;

const PROCESS_DECIDE = 2; const PROCESS_DONE = 3;

type Process component { status Process Status; input int;

output int;

get_x pull () int; set_x push (v int); Decide push (v int);

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

85 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

};

init (this *Process) Init () { this. status = PROCESS_IDLE; this. input = -1;

this. output = -1;

}

reaction (this $const * Process) initr (v int) { activate {

this.input = v;

if this.status == PROCESS_IDLE { this.status = PROCESS_ACCESS;

}

}

}

Figure 4.3: Code listing for Process component of the Shared Variable System (part

1)

action (this $const * Process) _access (this.status == PROCESS_ACCESS) { x:=

this.get_x ();

if x == -1 {

activate set_x (this.input) {

println („x set to „, this.input); this.output = this.input; this.status = PROCESS_DECIDE;

}

}

else {

activate {

this.output = x;

this.status = PROCESS_DECIDE;

}

}

}

action (this $const * Process) _decide (this.status == PROCESS_DECIDE) { activate

Decide (this.output) {

this.status = PROCESS_DONE;

}

}

Figure 4.4: Code listing for Process component of the Shared Variable System (part

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

86 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

2)

The most interesting part of the Process component is the _access action. Like reactions,

actions honor the immutable phase by requiring a receiver with immutable indirection mu-

tability (this $const * Process). The precondition for _access tests that the Process

is ready to access the shared variable. When executed, the _access action samples the state

of the shared variable by calling the get_x pull port and assigns this to the local variable x.

Note that pull ports may only be called in the immutable phase. If the shared variable has

not been set as indicated by the sentinel value -1, the process sets it to the value requested

by the User (this.input) by activating the set_x push port. Once the mutable phase begins,

the Process outputs a message, copies the input variable to the output variable, and then

changes state to prepare to decide. If the shared variable has been set, i.e., another process

executed its _access action first, the process sets its output variable to the value of the

shared variable as stored in x and prepares to decide.

The final element in the Process component is the _decide action which activates the

Decide push port with the value of the shared variable stored in the output variable and

transitions to the done state.

The interface of the Process component gives hints as to its contextual dependencies

and intended use. The Process component expects an initialization message (initr

reaction) from the User and will report back to the User (Decide push port). The

Process component requires the ability to interrogate the value of the shared variable

(get_x pull port) and the ability to the set the shared variable (set_x push port).

The state transitions of a Process component can be determined by tracing the status

variable. A Process component starts in the idle state according to the Init

initializer. The Process will stay idle until its initr reaction is activated at which

point it will enter the access state. Given the fairness guarantees of the scheduler, the

_access action will eventually be executed as the Process is in the access state. The

execution of _access is governed by an if statement but both branches set the state of

the Process component to decide. Given the same fairness guarantees, the _decide

action will eventually be executed as the Process is in the decide state. The _decide

action unconditionally sets the state of the component to done. There is no way for a

Process component to leave the done state as all of its actions are conditioned on the

Process being in either the access or decide state. Similarly, the initr reaction only

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

87 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

moves the Process from the idle to the access state.

Thus, the state of the component logically flows from idle, to access, to decide, to

done assuming that the User does indeed activate the initr reaction.

The preceding two paragraphs illustrate how the reactive component model and the

proposed programming language achieve principled composition. The behavior of a

component can be determined by only examining the text of the component. This is

possible due to the strong guarantees that 1) component state cannot be manipulated

outside of an action or reaction, 2) actions and reactions are logically atomic, and 3)

the scheduler will eventually execute all enabled actions. For compositional reasoning,

the behavior of a component can be abstracted and stated in terms of assumptions and

guarantees about its interface elements, namely, push ports, reaction, pull ports, and

getters. For example, a Process component will decide the value of the shared variable

when initialized via the initr reaction.

Figure 4.5 shows the User component. The User component has three states indicating

the user is waiting to make a request, waiting for a response, or done. The first state

variable v contains the value sent in the request to a User. The status state variable

contains the state of the User. The decision state variable contains the value of the

response. The error state variable is a flag indicating that an error has occurred. User

components contain a push port initp that sends the requested value to the

corresponding Process. The Init initializer sets the requested value to the supplied

parameter, the state of the User to request, the decision variable to the sentinel value

of -1, and the error flag to false.

The _init action shown in Figure 4.6 moves the User component from the request

state to the waiting state while initializing the corresponding Process component via

the initp push port. The _dummy action and the treatment of the error flag by the _init

action are for consistency with .

The Decide reaction prints out the identity of the User and the value received by the

User. If the User is not in an error condition and waiting for a response, then the value

of the decision is recorded and the User changes to the done state. Otherwise, the error

flag is set meaning that the corresponding Process activated the Decide reaction before

the _init action.

Type UserStatus int; const USER_REQUEST = 0; const USER_WAIT = 1; const

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

88 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

USER_DONE = 2;

type User component { v int;

status UserStatus; decision int; error bool;

initp push (v int);

};

init (this *User) Init (v int) { this.v = v;

this.status = USER_REQUEST; this.decision = -1; this.error = false;

}

Figure 4.5: Code listing for User component of the Shared Variable System (part 1)

action (this $const * User) _init (this.status == USER_REQUEST || this.error) {

activate initp (this.v) {

if !this.error {

this.status = USER_WAIT;

}

}

}

action (this $const * User) _dummy (this.error) { }

reaction (this $const * User) Decide (v int) {

println (this, „ decided value is „, v);

activate {

if !this.error {

if this.status == USER_WAIT {

this.decision = v;

this.status = USER_DONE;

} else {

this.error = true;

}

}

}

}

Figure 4.6: Code listing for User component of the Shared Variable System (part 2)

type System component {

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

89 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

x Variable;

process [3]Process;

user [3]User;

};

init (this *System) Init () {

this.x.Init ();

for i... 3 {

this.process[i].Init ();

this.user[i].Init (i + 100);

}

}

bind (this *System) _bind {

for i... 3 {

this.process[i].get_x <- this.x.Get;

this.process[i].set_x -> this.x.Set... i;

this.user[i].initp -> this.process[i].initr;

this.process[i].Decide -> this.user[i].Decide;

}

}

instance s System Init ();

Figure 4.7: Code listing for System component of the Shared Variable System

Figure 4.7 shows the System component. The system component contains a Variable

sub- component, three Process sub-components, and three User sub-components. The

Init initializer initializes all of the sub-components. The User processes are initialized

with the values 100, 101, and 102. Thus, User 0 will attempt to set the Variable to 100,

User 1 will attempt to set the Variable to 101, and User 2 will attempt to set the

Variable to 102. The _bind binder “wires” the system. The first line of the for loop

binds the get_x pull port of each Process to the Get getter of the Variable. The second

line of the for loop binds the set_x push port of each Process to the Set reaction of the

Variable. Notice that the Set reaction is indexed to avoid binding the same input

multiple times. The third line of the for loop binds the initp push port of each User to

the initr reaction of each Process. The fourth line of the for loop binds the Decide push

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

90 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

port of each Process to the

figure 4.8: Diagram of a System component of the Shared Variable System

Decide reaction of each User. The final line of the listing creates an instance of the

System component named s and initializes it with the Init initializer. Figure 4.8 shows

a graphical representation of a System component.

Figure 4.9 shows sample output for an execution of a System component. The first

line of output is generated by the _access action of the Process component. In the

sample, Process 2 is the first process to set the Variable. As expected, only one

Process sets the variable. The final three lines of output show the identity of each User

and the value returned to it. As expected, the value returned to each User is consistent

with how the Variable was set.

x set to 102

0x1fd7258 decided value is 102

0x1fd71f8 decided value is 102

0x1fd7228 decided value is 102

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

91 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

Figure 4.9: Sample output for a System instance of the Shared Variable System

type Channel component {

queue Queue;

receive push (message $foreign *heap uint);

};

reaction (this $const * Channel) send (message $foreign *heap uint) {

var x *heap uint = move (message);

activate {

this.queue.Push (x);

};

}

action (this $const * Channel) _receive (!this.queue.Empty ()) {

activate receive (this.queue.Front ()) {

this.queue.Pop ();

};

}

Figure 4.10: Code listing for Channel component of the Heap Channel System

4. 6.2 Heap Channel System:

In this example, we demonstrate how the heap data type may be used to transfer

objects between components for efficient communication. The example consists of

two components: a top-level System component and a Channel component. The

Channel component is a reliable FIFO channel based on the Channel Automaton of

[64]. The System component transfers 100 messages to the Channel component which

then transfers the same 100 messages back to the System. The messages consists of a

heap with a uint root object.

Figure 4.10 shows the Channel component. A Channel component consists of a

queue of messages and a push port named receive which offers up a pointer to a heap

with a uint root. Since the parameter contains (is) a pointer, it must be declared with

$foreign indirection mutability. The elements of the Channel are named from the

perspective of the process that uses the Channel.

The send reaction moves the heap which makes the Channel the new owner of the

heap. Any heap operations on message after the move statement will return nil. The

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

92 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

move occurs outside of the activation because the message parameter is not available

in the body of the activation. Parameters and variables with types that contain pointers

and have foreign indirection mutability are not available in the body of an activate

statement because they may represent the state of another component which must be

assumed to be invalid in the mutable phase of a transaction. After a move, the state

contained in a heap is no longer available to the component that offered it up as an

argument to a reaction. Thus, the result of the move does not have foreign indirection

mutability and is available in the body of the activate statement.

Figure 4.11 shows the System component that exercises the Channel. A System

component consists of a Channel sub-component, a counter, and a push port for

sending messages. The _send action checks if the desired number of messages (100) has

been sent. If not, the System creates a new heap with a uint root. It then makes the

new heap the active heap via the change statement which also makes the root of the

heap available in the variable y. The heap root is initialized with the number of

messages sent so far. The heap is then sent to the Channel, a message is printed, and

the number of sent messages is incremented.

The receive reaction receives a message back from the Channel. The System merges the

message which moves the root object of a heap to the active heap and returns a

pointer to the root object of the heap. Recall that all components have a default heap

which is the active heap upon entering an action, reaction, initializer, or getter. The

final statement in the reaction prints a message.

The system consists of two transactions: one that creates and transfers the heap from

the System to the Channel and another that transfers the heap from the Channel to the

System. The output of the program, then, consists of 100 lines indicating that a message

was sent and 100 lines indicating that a message was received. Each line of output

contains the message number. Based on the fairness of the scheduler we expect 1)

the 100 send lines to be in

type System component {

channel Channel;

send_count uint;

send push (message $foreign *heap uint);

};

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

93 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

init (this *System) Initially () { }

action (this $const * System) _send (this.send_count != 100) {

var x *heap uint = new (heap uint);

change (x, y) {

*y = this.send_count;

};

activate send (x) {

println („Sent „, this.send_count);

this.send_count++;

};

}

reaction (this $const * System) receive (message $foreign *heap uint) {

var x *uint = merge (message);

println („Received „, *x);

}

bind (this *System) Bind {

this.send -> this.channel.send;

this.channel.receive -> this.receive;

}

instance s System Initially ();

Figure 4.11: Code listing for System component of the Heap Channel System

order, 2) the 100 receive lines to be in order, and 3) the send line for message n appears

before the receive line for message n.

4. 7 Related Work:

rcgo is designed to be free from data races and draws upon existing work in this area.

Common techniques include 1) augmenting type declarations, signatures, etc., to indicate

sharing/locking requirements and effects; 2) associating objects with an owning thread or

memory region; and 3) transferring objects from one owner to another. The foreign at-

tribute of rcgo is similar to the lent attribute of Guava and the limited attribute of Promises

. All three techniques allow a reference to be temporarily shared but not stored so as to

create a shared resource. The transferable heap data type is similar to Islands and Values in

Guava .

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

94 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

All three types represent object graphs with no external references which allow them to be

transferred from one owner to another owner. In rcgo, objects are owned by component

instances while Islands and Values are owned by threads.

Preventing data races in multi-threaded programs is accomplished by protecting

critical sections with locks. Flanagan and Abadi developed a type system for statically

checking for data races.

This formalism was used in the design of both Guava and Cyclone .

Locks are explicit in Cyclone while they are implicitly associated with the monitors of

Guava. The reactive components of rcgo are similar to the monitors of Guava in that

access to shared state is implicitly synchronized.

The approach taken by the languages cited thus far is to demonstrate freedom from data

races through the type system exclusively. The type system of rcgo is weaker than these

languages in that it is only possible to prove that objects are not shared between

components via foreign indirection mutability. The check for sound composition

alluded to in Section 3.3.2 and described in Section 5.2 ensures that individual

transactions are free from data races. As described in Section 3.1.5 and Chapter 6, the

scheduler has the responsibility of scheduling transactions in a way that avoids data

races between transactions.

4. 8 Summary:

This chapter has presented the rcgo programming language for reactive components. An

im- plementation of reactive components tests whether the assumptions upon which the

model rests are practical. Our approach is to design new programming language syntax

and seman- tics to capture and enforce the semantics of reactive components. As a matter

of practicality, we impose support for reference semantics which allow developers to use

linked data struc- tures and support for transferring data structures from one component to

another. The cor- responding features are a declarable indirection mutability that allows

components to treat pointers as foreign and a transferable heap data type that represents a

self-contained linked data structure. Components are expressed as a collection of fields

(similar to a struct). Ports (push and pull) are expressed as fields of a component. Actions

and reactions are expressed as method-like elements. Composition is accomplished via

binders and instances. Our implementation of an interpreter for rcgois described in Section

5.1.

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

95 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

The rcgo programming language presented in this chapter allows developers to take a prin-

cipled approach to developing general purpose reactive programs. First, a developer

need not identify shared state and add appropriate locking because state is not shared

between components and each action/reaction is atomic. Second, a developer need not

worry about the consequences of composition. In paradigms where composition is

accomplished through synchronous function call, developers must determine the

conditions in which it is safe to transfer control to a function. In the reactive component

paradigm, the semantics of ac- tivate statements and ports provide strong guarantees

when composing and checking for illegal composition, which is the responsibility of the

run-time system (Section 5.2). Third, developers are no longer burdened with mapping

an inherently non-deterministic sequence of events onto one or more sequential threads of

control. Combined, the features of the model and language allow developers to reason

about the behavior of individual components by only examining their text. This, in turn,

allows the behavior of a component to be abstracted which facilitates reasoning about

components in the context of composition by using assume-guarantee reasoning .

Conclusions

 A reactive system is characterized by “ongoing interactions with its environment” [66].

Asyn- chronous concurrency is a feature of reactive systems that makes them inherently

difficult to develop.

 Reactive systems are already used in various forms of critical infrastructure and the

number, diversity, and scale of reactive systems is expected to increase given the con-

tinuing proliferation of embedded, networked, and interactive systems. Decomposition

and composition are two complementary techniques that are helpful when designing and

imple- menting reactive systems, especially given such increases in complexity.

 We argue that the dominant techniques based on multiple sequential threads/processes

thwart decomposition and composition and thus contribute to the accidental complexity

associated with reactive system development.

 Specifically, we believe that a model for reactive systems should facilitate principled

composi- tion and decomposition. Beyond defining units of composition and a means of

composition, a model for reactive systems should facilitate practical techniques like

recursive encapsulation and behavior abstraction through interfaces.

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

96 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

 Composition should be compositional meaning that the properties of a unit of

composition can be stated in terms of the properties of its constituent units of

composition. Finally, units of composition should be subject to substi- tutional

equivalence meaning that the definition of a unit of composition can be substituted for

its use and vice versa. Substitutional equivalence allows a complex system to be

reduced to a single unit and a complex unit to be decomposed into a system of simpler

units.

References

Clojure. http://clojure.org/.

Go. https://golang.org/.

Ioa language and toolset. http://groups.csail.mit.edu/tds/ioa/.

Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium

on High-Level Debugging, Pacific Grove, California, March 20-23, 1983.

Software engi- neering notes. Association for Computing Machinery, 1983.

C++11. ISO/IEC 14882:2011, September 2011.

Martin Abadi, Cormac Flanagan, and Stephen N. Freund. Types for safe locking:

Static race detection for java. ACM Trans. Program. Lang. Syst., 28(2):207–

255, March 2006.

A. Adya, J. Howell, M. Theimer, W.J. Bolosky, and J.R. Douceur. Cooperative

task management without manual stack management. In Proceedings of the

2002 Usenix ATC, 2002.

G.A. Agha. Actors: a model of concurrent computation in distributed systems.

MIT Press, 1986.

G.R. Andrews and F.B. Schneider. Concepts and notations for concurrent

program- ming. ACM Computing Surveys (CSUR), 15(1):3–43, 1983.

J. Armstrong, R. Virding, C. Wikstr, M. Williams, et al. Concurrent programming

in erlang. 1996.

J. Backus. Can programming be liberated from the von neumann style?: a

functional style and its algebra of programs. Communications of the ACM,

21(8):613–641, 1978.

David F. Bacon, Robert E. Strom, and Ashis Tarafdar. Guava: A dialect of java

http://clojure.org/
https://golang.org/
http://groups.csail.mit.edu/tds/ioa/

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

97 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

without data races. In Proceedings of the 15th ACM SIGPLAN Conference on

Object- oriented Programming, Systems, Languages, and Applications,

OOPSLA ‟00, pages 382–400, New York, NY, USA, 2000. ACM.

J.C.M. Baeten. A brief history of process algebra. Theoretical Computer Science,

335(2):131–146, 2005.

D.W. Barron, J.N. Buxton, D.F. Hartley, E. Nixon, and C. Strachey. The main

features of cpl. The Computer Journal, 6(2):134–143, 1963.

J.A. Berstra and J.W. Klop. Fixed point semantics in process algebra. Technical

Report IW 208, Mathematical Centre, Amsterdam, 1982.

R.D. Blumofe, C.F. Joerg, B.C. Kuszmaul, C.E. Leiserson, K.H. Randall, and Y.

Zhou.

Cilk: An efficient multithreaded runtime system, volume 30. ACM, 1995.

G. Booch. Object-oriented design. ACM SIGAda Ada Letters, 1(3):64–76, 1982.

F.P. Brooks Jr. The mythical man-month (anniversary ed.). Addison-Wesley

Longman Publishing Co., Inc., 1995.

Edwin C. Chan, John T. Boyland, and William L. Scherlis. Promises: Limited

specifi- cations for analysis and manipulation. In Proceedings of the 20th

International Confer- ence on Software Engineering, ICSE ‟98, pages 167–176,

Washington, DC, USA, 1998. IEEE Computer Society.

K.M. Chandy and J. Misra. Parallel program design. Reading, MA; Addison-

Wesley Pub. Co. Inc., 1989.

A. Church. An unsolvable problem of elementary number theory. American

journal of mathematics, 58(2):345–363, 1936.

W.D. Clinger. Foundations of actor semantics. PhD thesis, Massachusetts Institute

of Technology, 1981.

EF Codd, ES Lowry, E. McDonough, and CA Scalzi. Multiprogramming stretch:

feasibility considerations. Communications of the ACM, 2(11):13–17, 1959.

Melvin E. Conway. Design of a separable transition-diagram compiler. Commun.

ACM, 6(7):396–408, July 1963.

F.J. Corbat´o, M. Merwin-Daggett, and R.C. Daley. An experimental time-

sharing system. In Proceedings of the May 1-3, 1962, spring joint computer

conference, pages 335–344. ACM, 1962.

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

98 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

F.J. Corbat´o and V.A. Vyssotsky. Introduction and overview of the multics

system. In Proceedings of the November 30–December 1, 1965, fall joint

computer conference, part I, pages 185–196. ACM, 1965.

J. Corbet, A. Rubini, and G. Kroah-Hartman. Linux device drivers. O‟Reilly

Media, 2005.

D.E. Culler, A.Dusseau, S.C.Goldstein, A. Krishnamurthy,S. Lumetta,T. Von

Eicken, and K. Yelick. Parallel programming in split-c. In Supercomputing‟93.

Proceedings, pages 262–273. IEEE, 1993.

O.J. Dahl, E.W. Dijkstra, and C.A.R. Hoare. Structured programming. Academic

Press Ltd., 1972.

M. Davis. Computability & Unsolvability. Dover Books on Computer Science

Series. Dover, 1958.

D.C. DeRoure. Parallel implementation of unity. The PUMA and GENESIS

Projects, pages 67–75, 1991.

E.W. Dijkstra. Cooperating sequential processes. Technical report, Technological

University, Eindhoven, The Netherlands, September 1965.

J.R. Driscoll, N. Sarnak, D.D. Sleator, and R.E. Tarjan. Making data structures

persistent. Journal of computer and system sciences, 38(1):86–124, 1989.

ECMA International. Standard ECMA-262 - ECMAScript Language

Specification. 5.1 edition, June 2011.

E. Emerson and E. Clarke. Characterizing correctness properties of parallel

programs using fixpoints. Automata, Languages and Programming, pages 169–

181, 1980.

K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The notions of

consistency and predicate locks in a database system. Commun. ACM,

19(11):624–633, November 1976.

Cormac Flanagan and Mart´ın Abadi. Object types against races. In Proceedings of

the 10th International Conference on Concurrency Theory, CONCUR ‟99,

pages 288–303, London, UK, UK, 1999. Springer-Verlag.

The Apache Software Foundation. http://www.apache.org.

The Apache Software Foundation. http://tomcat.apache.org.

D.P. Friedman and D.S. Wise. The Impact of Applicative Programming on

http://www.apache.org/
http://tomcat.apache.org/

International Journal of Cultural Inheritance & Social Sciences (IJCISS)
Vol. 6 Issue 11, March 2024, ISSN: 2632-7597 Impact Factor: 5.266

Journal Homepage: http://ijciss.com/, Email: journal.ijciss@gmail.com

Double-Blind, Peer Reviewed, Refereed & Open Access International Journal

99 International Journal of Cultural Inheritance & Social Sciences

http://ijciss.com/, Email: journal.ijciss@gmail.com

Multipro- cessing. Technical report (Indiana University, Bloomington.

Computer Science Dept.). Indiana University, Computer Science Department,

1976.

A. Ganapathi, V. Ganapathi, and D. Patterson. Windows xp kernel crash

analysis.20th LISA, pages 101–111, 2006.

S.J. Garland, N.A. Lynch, J. Tauber, and M. Vaziri. IOA user guide and reference

manual. Computer Science and Artificial Intelligence Labatory, 2003.

C. Georgiou, N. Lynch, P. Mavrommatis, and J.A. Tauber. Automated

implementation of complex distributed algorithms specified in the ioa language.

International Journal on Software Tools for Technology Transfer (STTT),

11(2):153–171, 2009.

K.J. Goldman. Distributed algorithm simulation using input/output automata.

Tech- nical report, DTIC Document, 1990.

K. Gopinath and J.L. Hennessy. Copy elimination in functional languages. In

Proceed- ings of the 16th ACM SIGPLAN-SIGACT symposium on Principles

of programming languages, pages 303–314. ACM, 1989.

A. Granicz, D. Zimmerman, and J. Hickey. Rewriting UNITY. In Eobert

Nieuwenhuis, editor, Proceedings of the 4th International Conference on

Rewriting Techniques and Applications (RTA 14), volume 2706 of Lecture

Notes in Computer Science. Springer, June 2003.

Dan Grossman. Type-safe multithreading in cyclone. In Proceedings of the 2003

ACM SIGPLAN International Workshop on Types in Languages Design and

Implementation, TLDI ‟03, pages 13–25, New York, NY, USA, 2003. ACM.

S. Halloway. Programming Clojure. Pragmatic Bookshelf, 2009.

Maurice Herlihy and J. Eliot B. Moss. Transactional memory: architectural

support for lock-free data structures. In Proceedings of the 20th annual

international symposium on computer architecture, ISCA ‟93, pages 289–300,

New York, NY, USA, 1993. ACM.

C. Hewitt, P. Bishop, and R. Steiger. A universal modular actor formalism for

artifi- cial intelligence. In Proceedings of the 3rd international joint conference

on Artificial intelligence, pages 235–245. Morgan Kaufmann Publishers Inc.,

1973.

